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AANALYSES DE PROCESSUS

a mort est un bon point de départ. 

Au lieu de vaciller sur ses bases, de patauger dans des conditions ini-
tiales que l’on ne connaît pas, de remonter à ses origines douteuses, de

reconstituer son être par des processus infiniment complexes enroulés dans des
molécules génétiques dont il faut des milliards d’essais pour trouver la combinaison
du coffre des ancêtres, mieux vaut démarrer le processus de la vie avec cette simple
et tranquille certitude.

Après la mort, tout devient possible, tout peut arriver. On ne sait pas. Donc, ce n’est
pas dans cette direction qu’il faut aller: c’est rétrospectivement, vers maintenant,
c’est-à-dire vers les processus qui lui ont donné naissance. 

Le décès, comme le mariage, est avant tout un acte notarié, commis le plus souvent
avec préméditation. À la différence, parfois, que l’on peut se marier sur un coup de
tête, alors que l’on peut mourir d’un coup de queue. Mais c’est l’aboutissement
d’une suite d’actions et d’une interaction de millions de processus faisant intervenir
des millions d’agents. C’est fou le nombre de processus qu’il faut mettre en oeuvre
pour arriver à en mourir, alors qu’ils sont contrecarrés par tant d’agents et de thé-
rapeutiques de survie, dont les effets secondaires peuvent être immortels. 

Ce sont quelques processus, donc, mais dans leur version symbolique, ainsi que
leur analyse, qui sont l’objet de cet exposé.

On en sortira transformé, radieux, allégé par la baguette magique des transfor-
mées-z et de Laplace, on s’affranchira de l’espace temporel en passant dans
l’espace des fréquences; là, on ne sera plus qu’une transfiguration algébrique,
envoyant du ciel, où montent en fusées d’artifice les processus divergents, de cha-
toyants graphes de flux de signaux.
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1 Processus temporels

1.1 Processus

1.1.1 Définition 

Un processus est défini comme «une interaction persistante dans le temps entre deux ou
plusieurs entités impliquant des échanges de matière, énergie et/ou information, qui
conduisent à des changements de quantités ou de propriétés des entités impliquées». En
principe, les foncteurs des processus purement temporels n’impliquent pas de conversions ; ils
ne modifient donc pas de façon significative les entités, de sorte que celles-ci ne changent
pas de nom.

Le cas particulier de processus qui occupe cet exposé est orienté par l'indice temporel ; si
l'orientation temporelle est unique il s'agit évidemment du cas le plus familier, celui du
processus séquentiel. Celui-ci est en général considéré "par défaut" (c’est-à-dire quand il
n’est pas spécifié autrement); comme toute restriction, cela fait perdre de la généralité,
dans ce cas par l’oubli de propriétés comme l’interaction, l’anticipation ou la rétromettance avec
lesquelles un systémicien méritant doit en découdre. 

Que l’on se rassure: on ira le faire, mais plus loin pour ne pas déranger les esprits moins
alertes.

1.1.2 Processus séquentiel

L’aspect temporel vient naturellement lorsqu’il y a des intervalles de temps séparant les
événements ou les valeurs exprimées. Le nombre de ces intervalles est donné par la diffé-
rence entre les indices; de la sorte, une variable "y" écrite yt+k est décalée de k intervalles
de temps par rapport à yt ; l’indice, décalé dans le sens positif, indique que yt+k est situé k
périodes "après" yt. Bien sûr, yt-k est vieux de k intervalles par rapport à yt. 

La Figure 1 présente cet argument important de la description de processus: la significa-
tion du codage par les indices, lequel conditionne la modélisation. L’exposé sur «Les
Modèles de processus» le présente avec l’exemple du cycliste pour plaire aux Lecteurs les
plus mobiles; si on ne l’a pas sous la main, on peut se servir du bref rappel ci-dessous:

• Dans le cas de codage d’itération, il s’agit d’une répétition d’"essais" du modèle faits
avec les valeurs successives de cet indice; cela s’applique aux exploitations des confi-
gurations dites "passives", via leurs "modules opérationnels".

• Dans le cas de codage séquentiel, les entités se présentent dans l’ordre de l’indice; ceci est
valable pour les flux et les transformations, telles qu’il en sera présenté à la section 3.
Quand l’ordre est pertinent, cela forme des chaînes ("strings" en anglais, mais quand
c’est un (très) petit vêtement, on les dit aussi "coupe-crottes" en français) d’inputs. 

• Le codage temporel situe les entités aux repères désignés par l’indice, et les flux trans-
fèrent du temps. Dans ce cas, à la fois l’ordre, les valeurs et la situation de ces valeurs
dans le temps sont significatifs pour l’output. 
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Les modèles temporels seront représentés plutôt par des graphes de flux de signaux que par
des blocs algébriques; toutefois, les transformées "z" et "de Laplace" rendront possible
d’y exploiter l’algèbre des opérateurs, et de résumer de la sorte des compositions tempo-
relles même complexes. On en fera quelques faciles qui sont utilisées en gestion.

Ceci dit, il est gênant de dessiner un processus réel séquentiel, étant donné la lecture clas-
sique de gauche à droite, en suivant progressivement "l’axe temporel" situé par conven-
tion en abcisses. Cet argument est aussi illustré par la Figure 1, qui montre trois façons de
coder et représenter une séquence de valeurs x codées par des indices temporels k se pré-
sentant à un foncteur h, et devenant des yk:

• La séquence réelle : les entités codées arrivent au foncteur (et en sortent, dans cet
exemple) dans cet ordre là; sur la figure, la valeur "a" de x sert à montrer que c’est la
première de la série; des "itérations" se feraient par exemple selon de telles séquences,
alors que les modèles dynamiques utilisent les deux suivantes;

• La séquence symbolique : c’est celle selon laquelle on "lit" les indices de la succession de
gauche à droite; elle est enrichie d’un opérateur de décalage, qui engendre un délai
d’arrivée, montrant bien le sens contre-intuitif de la convention;

• La troisième série montre les indices utilisés lorsque le repère temporel t est situé
"maintenant", c’est-à-dire t=0. À ce moment, y-k est "vieux" de k périodes, ce qui est
clair et économique. Mais méfions-nous, c’est comme la mort: l’avant et l’après ne
sont pas symétriques. De toute façon, comme disait l’autre (Sacha GUITRY?), «Les
rumeurs concernant ma mort sont fortement exagérées». N’empêche qu’elles auraient
fait dire à son ex-femme, Yvonne PRINTEMPS, dans cette riante perspective: «Enfin
raide!».

Figure 1. Expressions des indices de séquences

Générateur de x Récepteur de y

x(k)= a, b, c, d, e,...

Foncteur 

y = ..., hd, hc, hb, ha h

Paramètres

k = ..., 4, 3, 2, 1

k=1, 2, 3, 4,...
h =12

y = . , . , a, b, c, d,... 

x(k) = ..., d, c, b, a
a) Séquence réelle :

b) Séquence symbolique avec décalage :

t-k = ..., t-4, t-3, t-2, t-1
"Maintenant" = t

t

k = ..., -4, -3, -2, -1 0 +1, +2, +3, +4,... 

c) Séquences d’indices conventionnelles :

t+1, t+2, t+3, t+4,... 

"Maintenant" = 0
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1.2 Notions temporelles figurant dans des processus

Les configurations sont qualifiées de statiques dans les conditions suivantes:

• Elles ne sont pas situées explicitement dans un domaine temporel. Ainsi, on ne dit pas
quand cela commence, ou finit, quelle est la succession des phases et combien d’unités
de temps prend le transfert ; 

• La succession des indices est pertinente, mais la séquence des codes n’est pas néces-
sairement conservée;

• Le rôle du temps n'y est pas explicite; 

• On n'a pas parlé du temps nécessaire pour les transferts et les transformations;

• Il n'a pas été spécifié si des entités attendent, ou accumulent de l'information ou du
temps, ou encore anticipent ; 

• Elles sont qualifiées de passives parce qu’elles n’expriment pas une activité fournissant
des outputs enregistrés au cours du temps. 

Cette passivité va être à présent ébranlée, puis prise en mains, par les arguments suivants: 

• Lorsqu’aux connexions sont associées des entités capables d'affecter la séquence tem-
porelle, on parlera de décalages et de délais ; 

• Lorsque sont associées à des transformateurs des propriétés d'accumuler de l'information
et du temps, on parlera de mémoire ; 

• La mémoire est rétrospective si elle accumule des données dont l'indice temporel est
négatif (par rapport à "maintenant"); 

• La mémoire est prospective si elle accumule des données dont l'indice temporel est posi-
tif (par rapport à "maintenant"): c'est le cas de l'anticipation. 

• Des inputs leurs seront soumis sous forme d’impulsions, ce qui va les activer un peu.

De telles propriétés et considérations sont développées dans les exposés sur la dynamique ;
on n'aura besoin ici que d'une brève spécification d'un décalage et d'un délai de façon à
pouvoir s’engager dans la rétromettance. De plus, les arrangements considérés ici ne sont pas
asservis; c'est à cette dernière considération qu'est associée la notion de consigne, qui sera
présentée dans l’exposé «Processus sous consigne».

1.2.1 Décalage

Un décalage (temporel) est une translation d'un sous-ensemble d'indices (temporels) : 

• Un décalage prospectif est régi par une translation positive des indices (ce qui leur
donne donc une valeur plus élevée); 

• Un décalage rétrospectif est régi par une translation négative des indices (ce qui leur
donne donc une valeur plus faible, et recule la référence dans le temps). Le décalage
affecte l’ensemble des indices sans changer les références temporelles, donc le cycle
temporel du processus. Ainsi, si un coureur cycliste est disqualifié, tous ceux qui le
suivent avancent "d’un rang" et c’est pourquoi lorsque des prédécesseurs se pètent la
gueule on a l’impression très réaliste de progresser. 
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L’écriture typique du décalage, est :

yk = xk-t, 

Un exemple en est donné par le Tableau 1 sur quelques valeurs numériques. 

Le délai, en revanche, sera un accumulateur de temps, repris en 1.2.2. Dans le cas des
cyclistes, par exemple, si un passage à niveau se présente dans une course, toute une
théorie de pédales vont s’agglutiner les unes dans les autres, et les retardataires sont bien
contents de les attraper par derrière.

La Figure 2 représente une succession de valeurs xt et leur projection selon "xt-1". C’est
une extrapolation "naïve" de x qui consiste à prédire "pas de changement", donc conser-
ver la dernière valeur observée. Ce mode est fondé sur une hypothèse de stationnarité du
premier ordre, c’est-à-dire, en l’absence d’information "innovante" et crédible, la stabilité
de la moyenne et une espérance mathématique nulle des variations potentielles (aléa-
toires, imprévisibles) autour de cette moyenne. Un usage plus noble est de l’utiliser
comme référence pour la confrontation des performances de différents modèles d’extra-
polation.

Figure 2. La projection dite "naïve", ou "pas de changement"

Tableau 1. Décalage de valeurs numériques

Temps k xk-2 xk-1 xk

4 17 - -

5 19 17 -

6 13 19 17

7 15 13 19

8 ... 15 13

... ... 15...

1 2 3 4 5 6 70

Prévison: xk

k
...

* : Donnée: xk-1

* *

*

*

*

*
*

*
* ?
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Un peu plus intéressante à présent est la formulation:

(1) xk = p1.xk-1 + p2.dk + p3.uk

Dans (1):

• x est la variable endogène, donc résultante de sa propre dynamique et des influences; 
• d est une variable de décision ;
• u est une variable exogène . Ses valeurs sont arbitraires, ou mieux, décrivent des événe-

ments ou des comportements dont – pour le modèle considéré – le gestionnaire n’a
pas la maîtrise;

• On y a ajouté des petits paramètres pj pour faire plus vrai et plus joli.

Une relation entre des variables de management qui illustre classiquement (1) est celle de
la différence de stocks, selon les notations suivantes:

• Sk: le niveau de stock au moment k;

• Pk: le nombre d’unité entrée en stock (produites ou acquises) entre k-1 et k;

• Vk: le nombre d’unité sorties du stock (livrées ou jetées) entre k-1 et k.

La séquence temporelle (2) et les suivantes sont alors trivialement vraies:

(2) Sk+1 = Sk +Pk - Vk, soit :

S1 = P1 - (V1 - S0) 

S2 = S1 + P2 - V2 = P1 + P2 - (V1 + V2 - S0)

S3 = P1 + P2 + P3 - (V1 + V2 - + V2 - S0)

Soit, en écriture matricielle:

(3)

La structure qui s’en dessine est :

(4) s = D p - av + s0 

Dans (4), s est le vecteur d’état, D est la "Driving matrix", laquelle a le rôle d’opérateur de
transition dans le temps et s0 le vecteur des conditions initiales. Quand on deviendra
adulte – dans les exposés sur «La Dynamique» – l’écriture se généralisera vers:

(5) yk = C xk + d uk (+ y0)

Dans la version classique (5), y est le vecteur endogène, éventuellement garni de ses
conditions initiales, x est décisionnel (c’est le "p" de (4)) et u est l’impulsion exogène (le
v comme "ventes" dans (4)). Cela ne fait pas beaucoup rire les Lectrices, mais il y a pour-
tant beaucoup de modèles qui s’amusent avec.

Sl

S2


ST

l 0 0  0

l l 0  0

    
l l l  l

Pl

P2


PT



Vl S0–

Vl V2 S0–+



Vkk l=
T S0–

–=
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1.2.2 Délai

Soit une suite d'inputs codés par un indice temporel: xt, xt+1, ... , xt+h. Une entité qui
stocke une suite ininterrompue d'indices temporels décalés est un délai. Il n'est pas indis-
pensable de spécifier pour l'instant si la suite est discrète ou continue. Cela signifie que
dans les formalisations une suite partielle d'inputs est congelée, "immobilisée" dans un
stock, lequel va donc contenir les inputs ayant ces indices temporels, et le taux de renou-
vellement des entités dans le stock dépend de la suite présente dans le délai.

Le flux décongelé transféré par le délai doit avoir le même ordre d'indices que le flux qui y
entre. À l’encontre du cas du décalage, la présence d'un ou plusieurs délais peut affecter le
cycle temporel de l'ensemble de la configuration. Un délai est donc spécifié par un inter-
valle de temps, sa longueur , qui est la somme des décalages des indices. L’ordre du délai est
plus complexe car il fait intervenir à la fois le nombre et la spécification fonctionnelle des
délais. 

Le délai sera repris dans l’exposé sur «La Dynamique de systèmes en gestion», où il
deviendra formellement un intégrateur puisqu’il contient un accumulateur de flux.

1.2.3 Itération

Une itération est une séquence de transformations identiques appliquée à une suite
d'inputs de même nom codés par un indice temporel présentant un décalage rétrospectif.
Une itération peut être répétée n fois : n est alors l'ordre de l'itération. En pratique, n ité-
rations "refont la même chose" sur les inputs successifs de même nom ; il n'est pas dit évi-
demment que ces inputs successifs sont identiques, sinon l'itération est oiseuse. Si, et
seulement si, la configuration comprend une entité qui stocke la séquence d'outputs avec
le même décalage temporel, les itérations jouent le rôle d'un délai, dont l'intervalle de
temps est la somme des cycles temporels des itérations. Ceci n’est pas abstrait : les pro-
cessus réels qui travaillent "par lots" procèdent à des itérations avec stockage des élé-
ments jusqu’au transfert du lot ainsi constitué.

1.3 Opérateurs temporels

1.3.1 Définition

Soit un générateur qui fournit des valeurs à un foncteur h. Dans les processus temporels,
les interactions se manifestent par leurs associations et leurs dispersions, lesquelles sont
situées dans des "noeuds" sur les graphes de flux qui vont refaire surface dans un instant. 

Ce terme de "noeud", et d’ailleurs les "graphes de flux de signaux", est issu des schémas
électriques et électroniques, comme étant le point où s’expriment les "bilans" des cou-
rants, dont un exemple un peu trop léger figure dans l’exposé sur «La Systémographie».
Lorsqu’un noeud est capable de modifier les flux ou les valeurs qui lui sont soumises, il
fait une opération, et le foncteur de cet exploit est un opérateur. 
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Les opérateurs arithmétiques sont si fréquents et si connus que des signes spéciaux leur
sont dédicacés, mais leur origine n’est pas incontestée. Ainsi, une version de l’origine du
signe "-" le situe au treizième siècle, aux dépôts commerciaux de la place de Londres. Un
trait horizontal sur ballot y indiquait que le poids requis n’était pas atteint – donc qu’il en
"manque"; lorsque le lot est complété, on barre le signe "-", ce qui fait apparaître un
"plus". Pour vérifier cela, il faudrait demander à un Collègue encore plus âgé s’il aurait été
témoin de cette pratique; sinon, il faudra faire comme avec tout ce qu’on ne sait pas:
l’attribuer aux Sumériens si c’est malin, ou à Bernard Shaw si c’est comique. 

Ceci dit, la lecture de l’application d’un opérateur à un argument est celle d’un produit,
par exemple "hx". Il faut rappeler aux grands naïfs que ce n’est vrai que dans le cas parti-
culier où cet opérateur désigne le produit ; il est alors situé entre deux données, et ne
s’écrit qu’en cas de petit besoin urgent. Dans les autres cas, il désigne un machin, souvent
représenté par le signe générique "•", qui fait des tas de choses, même des tripotages
espiègles, aux arguments qui lui sont innocemment livrés. 

1.3.2 Opérateur de décalage

Soit un modèle linéaire donnant l’évolution temporelle de y en fonction de sa valeur
antérieure et du signal d’input ut. Dans ce cas, le foncteur f(yt-1) n’est qu’un coefficient
scalaire, disons a1, et la formulation est :

(6) yt = a1yt-1 +b0ut

Dans (6), l’output "y" a un comportement formé par une partie libre (la variation propre
de y) et une partie influencée (par u). Plus généralement, y peut être engendré par
l’ensemble additif de ses n valeurs antérieures et être percuté par b0ut, ce qui s’écrit :

(7) yt = a1yt-1 + a2yt-2 + ...+ anyt-n +b0ut

Le processus temporel de y est décrit par un modèle dit auto-régressif sous influence (de u)
ce qui forme (en (7)) une équation aux différences du ne ordre; c’est joli mais cela com-
mence à donner des inquiétudes au type chargé de la résoudre au lieu de l’écrire. De plus,
si la présentation est en continu (c’est la différentielle y qui est ici échantillonnée par "yt-
yt-1"), cela conduit à des équations différentielles à faire peur même aux candidats en
science de gestion. 

L’idée du gestionnaire de processus est de saisir (7) et de l’écrire comme dans l’expression
(8). On y voit que b0ut est une nouveauté à ajouter à la combinaison des valeurs anté-
rieures pour former la valeur la plus récente yt :

(8) yt - a1yt-1 - a2yt-2 - ... - anyt-n = b0ut

Ensuite, il délègue le pouvoir à des opérateurs. À cette fin, on nomme d’abord un opéra-
teur de décalage ("lag" en anglais) tel que:

yt = yt-1 et : -1yt = yt+1

L’ordre du décalage est l’exposant de l’opérateur , et le modèle est polynomial en cet opé-
rateur , selon (9): 

(9) () yt = ut
12/12/12
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Dans (9), l’opérateur  devient l’argument de la fonction (.) :

(10) () = 1+a1+a2²+... +an
n 

Cette forme (10) est généralisée par les modèles auto-régressifs sous influence. L’input
global sur y devient une séquence pondérée des inputs ut décalés, selon (11):

(11) yt - a1yt-1 - a2yt-2 - ... - anyt-n = b0ut + b1ut-1 + b2ut-2 + ...+ bn-1ut-n+1

Une deuxième fonction,  ayant l'opérateur pour argument,est engagée pour ude
sorte que la synthèse est (12):

(12) ()yt = () ut

En effet, ce n’est pas seulement la dernière impulsion qui projette le comportement, mais
les stimuli antérieurs (ici les ut-k, pondérés par des coefficients bk) laissent également des
traces. C’est comme les pulsations honteuses de l’enfance, c’est-à-dire des ut-k telles qu’en
avait encore Sigmund FREUD à t=70 ans. 

La correspondance discrète-continue de l’expression simple auto-régressive, sous impul-
sion ponctuelle ut se fait en constatant les équivalences suivantes. Soit "t" le temps initial
et y(t) la condition initiale. "Tout-à-l’heure" c’est t+1, et l’Angélus de dimanche midi c’est
t+k+1. De la sorte, la relation temporelles’écrit: 

(13) y(t+k+1) = b y(t+k) + bu(t+k) 

Entre (12) et (13), l’opérateur  joue le rôle de la translation temporelle d’une unité; elle
est équivalente à la relation générique continue:

(14) y = by + bu

La Figure 3 aide à montrer cette transformation du problème auto-régressif simple, qui
sera généralisé dans le Tome Nord par l’exposé sur «La Dynamique sous influence». 

Figure 3. Foncteur et opérateur de décalage

1.3.3 Opérateur de différence

Le cousin utérin de l’opérateur de décalage est celui de la différence première, laquelle au pre-
mier degré s’écrit :

y = yt - yt-1 =(1-  yt

Générateur Récepteur

u(t)

Foncteur

y(t)
b0



b0u(t)
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Il peut étendre sa capacité de concentrer le temporel par l’expression algébrique suivante:

²y = (yt - yt-1) - (yt-1-yt-2) = (yt -  yt) -( yt- ²yt) = yt - 2 yt + ²yt = (1-²)yt

Si on n’est pas trop près d’une grande chandelle de prof qui n’éclaire pas loin, on voit dis-
tinctement qu’on peut continuer comme cela jusqu’à ce qu’un cancre nerveux lui casse
deux dents de lait. L’important, c’est que le débat passe du domaine temporel au domaine
algébrique, ce qui se fera notamment par les transformées.

1.3.4 Opérateurs de la forme canonique discrète

Souvent, en tricotant au coin du feu, elles parlent de l’âge "canonique". C’est la borne
inférieure des repères temporels qui autorisent à accéder à la somptueuse promotion en
tant que "bonne du curé", et que la règle fixe à quarante ans. Toutefois, les curés ont ten-
dance à se faire rares – pour ne pas dire à se faire désirer. La question angoissante est
donc à présent: quel est l’âge requis pour être autorisé à être le curé d’une bonne?

C’est ce qui arrive au modèle auto-régressif discret. Il peut lui aussi être conduit à une
forme canonique en variable d’état x par les transformations dites "des phases", écrites
ci-dessous avec la légèreté des scalaires. La colonne de droite montre les mêmes défini-
tions, mais décalées d’un pas temporel vers l’avant, et l’élimination de yt en fonction de xt
arrange tout le monde comme dans le cas continu. 

x1(t) = y(t-n+1) x1(t+1) = x2(t)

x2(t) = y(t-n+2) x2(t+1) = x3(t)

xn-1(t) = y(t-1) ...

xn(t)  = y(t) - u(t) xn(t+1) = y(t+1) - u(t+1)

 = -a1y(t) - ... - any(t-n+1)

 = -a1x1(t) + ... -anxn(t) + u(t)

Le correspondant de la forme canonique en phases est appelé "nested" programming. La
version matricielle (dite "direct programming") est (15)-(16), où les indices montrés sont
sont 1, 2, n pour simplifier la lecture:

(15)

B o n n e
Cherche C u r é

3 jours / semaine
Références exigées

x1 k 1+ 
x2 k 1+ 
xn k 1+ 

a1– a2– an–

1 0 0
0 1 0

x1 k 
x2 k 
xn k 

1
0
0

u k +=
12/12/12
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(16)

L’écriture conventionnelle d’un tel système (15)-(16) est dite canonique lorsqu’il est bien
admis que:

• Le modèle est linéaire;
• Les coefficients sont constants;
• L’impulsion (uk) est un vecteur en k.

L’extension à plusieurs inputs et outputs se fait en empilant les vecteurs respectifs et
adaptant les dimensions matricielles des opérateurs en conséquence de cette extension de
l’espace de référence; (donc d est un vecteur et B devient une matrice). Ceci autorise une
même écriture synthétique pour un processus temporel plus général, exprimé en discret
par (17)-(18), et représenté par la Figure 4.

(17) xk+1 = A xk + B uk

(18) yk    = C xk + d uk 

Et voilà que x se dépose sur une trajectoire par un opérateur A, qui, sous ce régime linéaire
qui rend le modèle très mince, est une matrice de transition. 

Figure 4. Inputs, états internes et outputs

1.3.5 Exemple numérique 

yt = - 2 yt-1 + 0,5 yt-2 - 0,2 yt-3 + 0,5 ut-1 - 0,4ut-2 + 0,7ut-3 

Les vecteurs sont: a1= 2 b0= 0,5
a2= -0,5 b1= -0,4
a3= 0,2 b2= 0,7

La formulation (17)-(18) devient numériquement la suivante, comme il est écrit dans les
"textbooks" depuis que tout le monde recopie la même chose.

y k  b1 b2 bn

x1
x2
xn

b0u k +=

Récepteur

y2(t)

États internes
yp(t)

y1(t)

Générateur

u(t)

Vecteur
de gain

...

Vecteur
d’inputs

Vecteur
d’outputs

...
d

x1,
 ... ,
xn
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1.4 Une petite convolution

La convolution est une formulation mathématique qui joue un rôle important dans beau-
coup de domaines impliquant directement ou indirectement des réponses à des impul-
sions et des sommes de variables indicées. C’est ainsi qu’on la retrouve en statistique
(pour les fonctions de répartition de sommes de variables aléatoires), dans les fonctions
génératrices, dans les traitements de signaux digitaux ainsi que dans la projection de
séries chronologiques relevant du domaine des filtres linéaires. 

Peu développé chez les gestionnaires primitifs, avant les cours de systémique, "l’esprit de
convolution" est une pourtant belle mentalité pour celui ou celle qui est en charge d’une
dynamique de processus.

Il suffira ici de la faire apparaître dans le cas le plus simple, à savoir celui d’un système
linéaire discret dont l’output yk est construit par une variété linéaire de ses propres valeurs
antérieures (yk-j) et des impulsions uk en remontant dans le temps (par k-n). On fera l’hypo-
thèse que l’output yk est nul avant le moment k=0. 

yk = b0 uk + b1 uk-1 + ... +bn uk-n - a1 yk-1 -a2 yk-2 - ... - an yk-n

Dans le cas particulier où y et u sont scalaires (donc un seul output et input) , l’opérateur
b est alors aussi scalaire et forme une séquence de pondérations :

et y0 = b0 u0

Soit que le processus envoie une impulsion unitaire, c’est-à-dire:

u0=1 (en k=0), 

La réponse de y "maintenant" est simplement:

w(0): y0 = b0 ; u0 = b0

Pour engendrer ses autres réponses, y combine sa propre série de valeurs "jusque là" avec
la série des impulsions et cela en croisant les indices du temps puisqu’il faut construire
chaque futur de l’un par le passé de l’autre : c’est ce que fait la convolution. 

x1 k 1+ 
x2 k 1+ 
x3 k 1+ 

2– 0 5,– 0 2,–

1 0 0
0 1 0

x1 k 
x2 k 
x3 k 

1
0
0

u k +=

y k  0 5, 0 4,– 0 7,

x1 k 
x2 k 
x3 k 

0 5u k ,+=

yk bk j– ujj 0=
k 1–

=
12/12/12
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La séquence engendrée, où w(k) va bientôt vouloir dire quelque chose, est : 

w(1): y1 = b1 u0 - a1y0 = b1u0 - a1b0

Intéressant? On va plus loin?

w(2): y2 = b2 u0 - a1y1 - a2 y0 = b2 - a1b1 + a1²b0 - a2b0

Comme on dit dans les ouvrages supérieurs (à celui-ci), «nous laissons au lecteur le soin
de»... continuer à faire des yk – disons, pour être raisonnable, jusque y57.823. La séquence
w(k) ainsi obtenue s’appelle séquence de pondération, car ses valeurs seront combinées avec
les valeurs antérieures de l’output pour former le nouvel output au temps k par (19):

(19) pour k=1, 2, ...

On voit bien dans (19) le rôle de toutes les valeurs antérieures (depuis le 0). Ceci forma-
lise l’argument selon lequel les conséquents (les y) ne sont pas ponctuels mais ont une
"mémoire" des impulsions antérieures (u) et des réponses (y) qui y sont associées. 

Une petite transformation d’indice facilite la lecture temporelle:

soit : t = k-j,
de sorte que : t = k quand j=0, 
et : t = 0 quand j=k,

où k est maintenant, tandis que j est l’ancienneté, comme le montre le Tableau 2. 

Donc si on est en k=5, quand est-ce que "t=3"? La réponse est "il y a deux périodes".
Pour le cas de t=4, ce serait "il y a une période". Cela a donc bien commencé en t=0. On
est dès lors dans le bon sens pour écrire (19) comme devenant (20):

(20)

Par temps clair, lors des nuits sans lune, on peut voir cela graphiquement à la Figure 5. La
séquence de pondération wk est, dans cet exemple, exponentiellement décroissante: le
but est de s’échauffer déjà en vue du lissage exponentiel, un modèle pratique présenté dans
une section ultérieure et qui a cette formulation. La séquence des impulsions (uk) est très
quelconque.

Pour obtenir (c) à partir de (b), sur la Figure 5, il suffit de lui dire de la retourner, la regar-
der dans un miroir, puis de faire une translation de k unités de temps. Vu la souplesse
nécessaire, on comprend alors pourquoi la convolution n’est pas plus répandue dans les
séquences d’un certain âge. L’output yk (montré en (e) mais ici non calibré graphique-
ment) est bien sûr obtenu par la sommation des composantes correspondantes. 

Tableau 2. Les indices de la convolution

j 0 1 2 ... k

t = k-j k k-1 k-2 ... 0

yk w k j–  uj
j 0=

k
=

yk wt uk t–
t 0=
k

=
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Figure 5. Composition de la somme de convolution

Bien que de nombreuses publications présentent cette matière très courante, il serait poli
de remercier CADZOW et MARTENS (Discrete Time and Computer control Systems, Prentice-
Hall, 1970, pp. 39 et environs) d’avoir déjà eu à l’époque le mérite d’écrire quelque chose
de compréhensible et de bonne référence pour longtemps. Leurs notations ont été ici
adaptées, et quelques mises au point de forme y ont cependant été apportées aux fins de
cohérence. Ils vont aussi aider à établir les correspondances via le traitement de signaux.

2 Processus de traitement de signaux

2.1 Correspondance discrète-continue

Soit une affection affectueuse, un état pathologique continu. Mais si cette pathologie un
peu chronique était le hoquet? Ce cas est-il une manifestation discrète d’une affection
continue, ou bien considère-t-on que le phénomène de hoquets répétitifs est une affec-
tion continue, mais échantillonnée ? 

De même, un processus continu de valeurs peut être échantillonné au moyen d’un rupteur,
qui en capte la valeur à des instants successifs. Il peut alors conserver des niveaux de
valeurs discrètes pendant des intervalles de temps, ce qui rend le signal résultant continu
par morceaux constants – ce que montrera la section 2.3. 

1 2 3 4 5 6 70

w(t)

t

w(1) w(2) w(3) w(4) w(5) w(6) w(7) ...
...

1 2 3 4 5 6 70

ut

t

u1

u2 u3
u4

u5

u6 u7
...

...uk-t

t

u0

(Pour k=3) w(t)uk-t

-3 -2 -1 0 1 2 3-4 t

u1
u2u3

u4u5
u6

u7

...
...

u0

(pour k=3)

w(0)u3

w(1)u2

w(2)u1

w(3)u0

"Données"

= yk 

+

+
+

w(0)u3

w(1)u2

w(2)u1

w(3)u0

(a)

(b)

(c)

(d)

"Poids"
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2.2 Correspondances entre les signaux 

L’échantillonnage par séquence d’impulsions est utilisé par convenance mathématique.
Parmi les systèmes "réels" dont ceci est le modèle, on trouve essentiellement les processus
d’échantillonnage des calculateurs et contrôleurs digitaux, où le traitement de signaux
concerne principalement la conversion. En effet, la commande de processus étant confiée à
des ordinateurs, il faut que tous les signaux puissent être traités sous la forme discrète et
digitale; une séquence typique peut être représentée par la Figure 6 (avec l’aide de
CADZOW et MARTENS, ibid.), où les boîtes contiennent des processus de conversion.

Figure 6. Séquence de conversions de signaux en vue du contrôle digital

L’"échantillonneur" ("sampler" en anglais) transforme le signal continu en un signal dis-
cret qui consiste en une séquence de valeurs échantillonnées prélevées sur le signal
continu original (en général à des intervalles constants). Le signal continu original et le
signal échantillonné ont en commun le fait d’être analogiques : 

• La propriété d’être analogique, qui peut être associée à un signal continu ou discret,
implique qu’il n’y a aucune restriction sur l’amplitude du signal dans une étendue
donnée; 

• Un signal digital a une amplitude restreinte à un ensemble borné de valeurs. 

2.3 Echantillonnage de signal continu

2.3.1 Attouchements et pulsations

Par son origine, le mot "digital" implique que l’on travaille avec les doigts. Une calcula-
trice "digitale" a donc nécessairement besoin de temps pour effectuer toute opération qui
lui est soumise par un programme. Ainsi, si on lui soumet un signal continu (t), elle doit
le palper avec précision puis, avec doigté, elle doit en circoncire des petits morceaux,
donc prélever des "bribes d’information". Ces attouchements subtils s’effectuent à l’aide
d’un "rupteur", qui capte l’amplitude du signal à des instants particuliers, supposés ici de
période constante, comme on le voit sur la Figure 7. 

Un peu plus tard, il pourra conserver l’information de cette amplitude, pour donner à son
client des pulsations qui subiront le traitement adéquat. 

Continu
Analogique

Discret
AnalogiqueDigital

Échantillonneur
("Sampler")

Convertisseur 
Ana/Dig Dig/Ana

Circuit
"hold"

Convertisseur 

Continu
Analogique

Discret
Digital
DiscretDiscret

Analogique

Ordinateur
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Figure 7. Échantillonnage par attouchements 

Il s’agit donc d’une modulation de l’amplitude (t) d’un train d’impulsions par le signal à
échantillonner aux instants périodiques 0, T, 2T, 3T, ... La Figure 7 aide aussi à com-
prendre la notion de "retard" du signal. En effet, au point J, par exemple, on peut estimer
que le signal, lancé à l’instant 0, est en "retard" de 2T, si l’on prend 0 comme référence et
J comme centre de diagnostic. 

Une autre manière de procéder consisterait à permuter les instants de référence et de
définir ainsi que par exemple en K le signal est en "avance" de nT. C’est pourquoi sur la
Figure 7 on a présenté sur l’axe des abcisses un Indicateur I(t), et non une "variable" tem-
porelle. Il n’indique donc pas nécessairement que K est après J. Si le temps passe de
gauche à droite, quand l’impulsion arrive en K, celle de J est déjà passée de 4 intervalles
de temps! Donc (t-3) n’est pas en retard, mais bien en avance de 3 intervalles par rapport
à (t) ; 

2.3.2 Echantillonnage non-instantané à période constante

Dans le cas précédent, la caractéristique d’impulsion "instantanée" est physiquement uto-
pique. Elle doit être adaptée en admettant que l’échantillon n’est plus une impulsion prise
à l’instant nT, mais bien un signal de durée h non nulle qui se présente à l’instant nT. Ce
signal, représenté à la Figure 8, introduit déjà l’important trait morse de la section 3.

Figure 8. Signaux de durée h aux instants nT

Indicateurs de temps



I(t)

(t)

0 T 2T 3T 4T 5T ... nT-T

Signal

"t"J K

0 T 2T 3T ... ... ... nT-T

Signal

(t) Indicateurs de temps
I(t)

h hh
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2.3.3 Obtention de la fonction d’impulsion de Dirac

a Mathématiquement

avec

b Pratiquement 

Soit que l’on reste coincé dans l’espace-temps positif, où t 0. La définition précédente
permet de constater aisément qu’un choix judicieux des unités suffit pour que l’on puisse
considérer cette fonction comme une fonction "percussion unité" telle que la montre la
Figure 9, où à la surface unitaire considérée on fait correspondre l’ordonnée 1. 

Figure 9. Options d’impulsions

En conséquence, on définit un train d’impulsions T(t) de Dirac comme une succession de
telles fonctions subissant un retard constant de période T, ce que représente la Figure 10.

Figure 10. Train d’impulsions de Dirac

 t   si t 0=

0 si t 0
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1
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La Figure 10 montre la constitution du train:

T(t) = (t) +(t-T) +(t-2T) + ... (t-nT) + ...

Afin d’obtenir une fonction (t) ayant l’allure de celle de la Figure 8, il ne reste plus qu’à
"moduler", c’est-à-dire à appliquer à cette fonction T(t) un opérateur de "saut" qui agit
aux mêmes instants, donc de même période. Ce processus est réalisé par la mise en paral-
lèle de T(t) et d’une fonction mathématique f(t) fournissant les coefficients de propor-
tionnalité à chaque instant, soit f(0), f(T), f(2T), f(3T), ... f(nT) , ..., selon la Figure 11. 

Figure 11. Convolution des signaux

La lecture de la Figure 11 est immédiate:

T(t) = f(0)(t) +f(1T).(t-T) +f(2T).(t-2T) + ... +f(nT).(t-nT) + ...

(21)

Et on est enchanté de retrouver la somme de convolution telle qu’à la Figure 5.

3 Les transformées 

3.1 Une jouissance fréquente et complexe

Les matins calmes on peut entendre sonner un courageux réveil (il risque sa tête à
claques) à dring-dring avec modulations s’il est cher, pendant disons deux minutes. Mais
si, au lieu de lui péter la gueule, on retourne l’oreiller et passe dans l’espace des fré-

T t   t nT– 
n 0=



=

T 2T 3T ... ... nT-T

Signal

Repères

0

.

.

T(t)

(n+1)T

*

(t-nT)
(t-T) [t-(n+1)T]

temporels

(t) (t-3T)
(t-2T)

f(0)
f(T)

f(3T)

f(nT)

f[(n+1)T]f(2T)

T 2T 3T ... ... nT-T 0 (n+1)T

(t)

f(t)

Repères
temporels

* * ***

 t  f nT   t nT– 
n 0=



=
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quences, on ressent avec ravissement une vibrante à 426 Herz, ce qui est proche de la
note "la" sur un piano Steinway. Le temps de trouver les racines propres de ce machin,
pour revenir dans l’espace temporel, l’autobus du boulot disparaît à l’horizon. 

Les travestis connaissent d’ailleurs bien les transformées de Laplace pour sortir de
l’espace du temps et entrer dans celui des fréquences. Ce qui est marrant, c’est que les gens
croient que lorsqu’on le fait dans l’espace des fréquences ça va plus vite, ou qu’on le fait
plus souvent. Or, en réalité, ce n’est qu’une jouissance plus complexe, vu qu’on l’obtient
par une intégrale de e-it. Le gag c’est que les états xi résultants sont alors souvent
variables et complexes aussi, et qu’il faut faire ensuite la transformée inverse (ce qui peut
demander une certaine souplesse) pour reprendre ses esprits dans l’espace temporel. 

Les transformées de FOURIER sont un peu cela, mais elles ont commencé plus modeste-
ment, par les petits jeux de dés des tripots fréquentés par DE MOIVRE. Déjà en 1730,
dans une éjaculation précoce, ce somptueux mathématicien a cherché – et trouvé! – le
moyen d’exprimer les probabilités associées aux sommes des valeurs obtenues en lançant n
dés réguliers "généralisés" à k faces numérotées de 1 à k. Dans cette version initiale il
s’agit donc d’engendrer les masses de probabilité de sommes de variables aléatoires à valeurs
entières: ce seront les premières fonctions génératrices de probabilité. 

Plus généralement, les transformées de LAPLACE (1812), puis celles de FOURIER (la
semaine suivante), plutôt construites à d’autres fins, permettent d’engendrer de façon uni-
voque toutes les fonctions de densité de probabilité et leurs moments. Les "fonctions
génératrices" peuvent donc être considérées comme une application spécifique (et très
jolie) des transformées de LAPLACE et FOURIER; leur version discrète est la transformée-
"Z-", à laquelle la fonction génératrice des probabilités est formellement équivalente. 

Le fait que leurs domaines d’exploitation sont variés est dû au service très général qu’elles
rendent sur les interactions entre des séries de valeurs de variables ou de fonctions
temporelles; une contribution déterminante en est la transformation de formulations
temporelles (linéaires) en formulations algébriques. 

La multiplicité des domaines où de tels problèmes se présentent font alors que leur
exposé peut être entrepris selon différentes approches, mais leur formulation mathéma-
tique directe, sans avoir besoin d’un contexte spécifique, est auto-suffisante. 

Cette variété de domaines d’exploitation a éveillé la cupidité des systémiciens vers cette
arme si puissante, eux qui ont tendance à se mêler un peu de tout... C’est même devenu
quasi par définition le domaine privilégié de la théorie des systèmes et de la systémique
appliquée; l’expression et le traitement des processus dynamiques par des modèles sym-
boliques est en effet le blason de la noble systémique – les autres disciplines qui en héritent
n’en étant que des bâtards. 

Il y a de nombreuses sources chaudes qui exhalent des vapeurs de transformées. Parmi
les plus saines, qui ont fait du bien au présent exposé, on conseillera E.L. Jury: Theory and
application of the z-transform method, Wiley, 1964 pour l’option discrète et pour l’option
continue, le cours de Mathématiques appliquées II, les transformations intégrales, par F. X. LITT,
AEES-Liège, ULg 1981 (Offert gracieusement par ce sympathique Cher Collègue, ce qui est
remarquable dans le milieu).
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3.2 Transformée de Laplace (unilatérale)

L’étude de l’incidence d’un signal donné sur un processus physique continu peut être faci-
litée par le travail dans un domaine artificiel auquel on accède par un changement de
variable appelé transformée de LAPLACE. Dans l’espace-temps positif (t0), ce qui la
rend "unilatérale", celle-ci est définie par:

(1)

Cette expression appelle quelques remarques hâtives pour se mettre à l’abri de critiques
sur son utilisation aveugle: 

• La variable s est définie dans le plan complexe, soit s=+j c'est donc dans ce
domaine-là que se font les discours sur la convergence, et pas ici sur terre.

• Elle n’est pas valide pour des fonctions temporelles f(t) dont l’évolution est plus
rapide que l’exponentielle, donc pour f(t)et, ou pour des fonctions trop bizarres
issues des fantasmes des matheux. 

• Elle connaît une version bilatérale (de - à +) mais seule la définition la plus simple,
(1) ci-dessus, sera utilisée et ce, aux fins d’introduire avec naturel la transformée-z,
laquelle concerne les séries discrètes. 

3.2.1 Propriétés

Quelques-unes de ses propriétés, citées ici mais que l’on peut démontrer quasi directe-
ment à partir de la définition, donnent un certain feeling de ce qu’elle peut faire, et sur-
tout aideront à effectuer une correspondance avec la transformée-z. Bien que n’étant
qu’un produit dérivé, c’est cette dernière qui sera plus explicitée ici en raison des services
rendus à des processus que l’on décrit quand on croit faire de la science de gestion.

a Transformées des fonctions "échelon" et "rampe"

La fonction "échelon unitaire" est omniprésente en étude des processus temporels. Elle
est définie mathématiquement par (2) ci-dessous et graphiquement par la Figure 12.

(2)

Figure 12. Fonctions "échelon unitaire" et "rampe"
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La formule de l’"escalier" est xk+1 = xk +a, où a est une constante entière.

En intégrant par parties successives depuis la définition, on a:

On obtient les cas particuliers pour n=0 (donc t0 pour l’échelon u(t)) et n=1 (donc t1

pour la rampe r(t)) : 

L[ u(t)] = 1/s et L[ r(t)] = 1/s²

b Translation vers la droite

La translation vers la droite est la procédure correspondant à l’expression d’une fonction
temporelle en relation avec des valeurs antérieures, ce qui est le fondement des processus
auto-régressifs et de l’extrapolation en économétrie. La formulation directe est donc:

g(t) = f(t-a), 

où a est le décalage, ce qui est représenté par la Figure 13.

Figure 13. Translation d’un fonction temporelle

Toutefois, comme on a convenu de ne considérer que le temps positif, f(t)0, il faut
constituer g(t) en multipliant f(t) par l’échelon unitaire u(t) décalé, soit:

g(t) = f(t-a)u(t-a), 

Effectuant la transformée, on obtient:

(3) G(s) = L[(t-a)u(t-a)] = e-saF(s)

Ce résultat (3) donne donc une interprétation de e-st comme opérateur de décalage ; on
retrouvera dans quelques instants ce même rôle très important attribué à "z".

c Intégrale et dérivée

Les expressions des transformées de l’intégrale et de la dérivée f ’(t) donnent une interpré-
tation complémentaire à la transformation; en effet, l’intégrale sur le temps a une conno-
tation d’accumulateur, et la dérivée celle d’un variation différentielle. 

L’intégration par parties de e-st f ’(t) donne pour la dérivée: 

(4) L[f’(t)] = sF(s) - f(0+)
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Soit à présent l’intégrale 

La dérivation des deux membres donne g’(t) =f(t), et en appliquant (4) ci-dessus on
obtient:

(5)

On est heureux de voir que toute cette extension du temps de 0 à t se manifeste par une
simple prémultiplication "algébrique" par 1/s; celui-ci aura de ce fait une place d’opérateur
dans les configurations de processus temporels. 

La vertu la plus prisée en est la transformation des équations intégro-différentielles
(linéaires) en équations algébriques; en effet, souvent les variations sont exprimées par
rapport au niveau ou à l’état atteint, disons x, ce qui donne dx/x, soit la différentielle du
logarithme lex, conduisant à des solutions temporelles du type x(t) = eat. Intuitivement, il
n’est donc pas tellement bizarre que des transformations de variables du type e-vt

amènent à des simplifications de traitement de telles formulations.

3.2.2 La transformée discrète "z"

On entre poliment dans z en effectuant la transformée de Laplace de la fonction (t)
"discrétisée" (1), c’est-à-dire:

(6)

L’expression (6) donne donc la transformée de la "fonction échantillonnée" de (t) de
période T, présentée sur la Figure 13. 

a Cas du retard: Z -[(t)]

Se rappelant que l’expression e-pt peut être considérée comme un opérateur de retard (de
pT périodes), on peut définir une transformée Z - d’une série discrète en posant:

z = e-st 

Dans ce cas, la transformation donne:
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Cette version (initiale) correspond à ce qui est généralement appelé "fonction généra-
trice". En fait, elle est associée aux travaux de DE MOIVRE (cité plus haut), concernant
les fonctions génératrices de probabilités, ces dernières étant obtenues par la suite des coeffi-
cients de polynômes en z. Comme cette voie n’est pas celle de cet exposé, la suite se fera
avec la formulation classique issue de la transformée de Laplace, présentée comme "cas
de l’avance" – ce qui est la bonne optique pour un gestionnaire pressé.

b Cas de l’avance: Z+[(t)]

La transformée Z+ d’une série discrète de temps positif s’obtient en posant dans (6): 

z = est fn =f(nT)

Ce qui donne:

(7)

Il apparaît déjà que l’argument "z" pourra jouer, dans les processus discrets, un rôle de
décalage temporel analogue à celui de l’expression e-nsT dans le cas continu. 

3.2.3 Simple et directe

Épargnant quelques kilomètres d’exposés aux promeneurs de cette interface, on entrera
directement dans la transformée-Z par son interprétation en tant que décalage d’un inter-
valle de temps. Si les intervalles de temps considérés dans la séquence temporelle sont
égaux, on peut utiliser l’expression plus simple: "unité" de temps. Dans ce cas, il y a une
confraternité formelle entre les transformées et les fonctions génératrices des masses
associées à des valeurs discrètes entières – celles qu’avait considérées DE MOIVRE. 

Soit fk une suite, c’est-à-dire une fonction à valeur numérique dont le domaine de défini-
tion est l’ensemble des entiers, k=0, ±1, ±2, ... Un exemple en serait 4k3 - e2k -k!, mais
celles qui seront considérées ici seront plus simples. 

La transformation-z de la suite fn définie sur les entiers positifs (0, 1, 2, ...) est la fonction
F(Z) développée de (7) par:

(8)

Quelques mots devront être glissés plus loin sur la convergence de cette série et sur sa
relation avec la transformée de Laplace, mais on ne peut tout dire à la fois. 

3.2.4 Inverse, perverse et complexe 

Le titre 3.1 avait annoncé une jouissance fréquente et complexe ; voici à présent pourquoi
elle est complexe et demande, comme on le craignait, une certaine souplesse. Les écri-
tures conventionnelles montrant la relation directe et la relation inverse entre le domaine
temporel et celui des transformées qui lui correspond sont:

(9) F(Z) = Z[fk] et fk = Z-1[F(Z)]
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La transformée inverse, faisant passer de l’espace des fréquences F(Z) (où on est arrivé
très facilement) à l’espace temporel f(k), doit s’écrire:

L’intégrale fermée est prise dans le plan complexe de Z, selon une courbe circulaire dont
le rayon est celui du rayon de divergence de la transformée. On est content? On peut
aller plus loin?

3.2.5 Inputs, transformée et outputs

En principe l’argument Z n’est qu’opérationnel, mais des transformées de suites élémen-
taires vont aider à donner du sentiment à cette transformation. Elles montreront que la
contribution principale des transformées de suites est d’exprimer l’interaction de séries
temporelles par le produit de leurs transformées, ce qui est alors une opération algébrique,
donc se prêtant à des gymnastiques sur des engins plus adaptés à la souplesse et la grâce
naturelles des Lectrices. En voici un facile d’emploi. 

Soit f la fonction génératrice des inputs, h son opérateur et g sa fonction d’output. Le
graphe de base du processus dans le domaine des transformées est la Figure 14 :

Figure 14. Inputs, transformée et outputs

Conformément à sa définition (8), la transformée d’un fonction temporelle élémentaire
s’obtient par le produit du vecteur des valeurs successives par les puissances de l’argu-
ment Z. Soit donc la suite le plus élémentaire engendrée par une fonction fk: 

f1 = 1, 1, 1, ...

k = 0, 1, 2, 

(10) f1
T = 1.Z-0 + 1.Z-1 + 1.Z-2 + 1.Z-3 + ... = f1

T (Z)

Définissant les vecteurs:

f ’ = [1 1 1 ...] et Z’ = [ Z0 Z-1 Z-2 ... ], 

il est clair que la transformée est dans ce cas le produit scalaire f ’z. 
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Soit à présent le cas de l’impulsion unitaire... suivie de rien, de sa réponse et de la transfor-
mée de la réponse. Une impulsion unitaire est définie par un cri "1!" lancé à un moment
donné, disons l’instant n=0, puis plus rien... épuisement ou silence de mort, allez savoir:

f1 = 0, 0, 1, 0, 0, ...

k = -2, -1,  0, 1, 2, ...

Ceci est évidemment un cas particulier de (10), où il reste seulement f1
T = 1.Z0 = 1. 

Avec cela, la théorie des systèmes fait un régal de petits plats mijotés. Cette transformée
de l’impulsion unitaire – et sa réponse "g" – permettent de pénétrer doucement dans les
processus dynamiques sous influence, de même qu’une brochette d’écrevisses flambées à
la vodka permet d’entrer doucement dans un repas, ou qu’une pointe d’arthrose aux
hémorroïdes permet d’entrer doucement dans une vieillesse presque sereine.

Voyons avec quelle aisance l’engin peut grimper une rampe, définie par:

f2 = 0, 0, 1, 2, 3, ...

k = -2, -1,  0, 1, 2, ...

Le produit scalaire, trop familier avec les clients, ne sera montré qu’une seule fois :

(11)

Quant au produit "scolaire", les profs et les parents le disent nettement moins perfor-
mant. En bande dessinée, les fonctions impulsion, palier et rampe sont sur la Figure 15. 

Figure 15. Signaux d’input discrets élémentaires

Il serait intelligent de demander au prof si par hasard les séries formées par les transfor-
mées convergeraient vers quelque chose d’intéressant? La réponse est oui, mais pas sous
n’importe quelle condition: il faut transformer des fonctions raisonnables, et surtout il
faut que ce "Z"soit situé hors d’un rayon R- dans un certain plan complexe dont on ne
dispose pas dans cet ouvrage, mais qu’on peut trouver dans des boutiques spécialisées
pour adultes. Donc, oui, ici elles convergent, et ailleurs, elles vont se faire outre. 
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Ces convergences sont respectivement de: 

(12) f1
T = 1/(1-Z) pour (f1), et

(13) f2
T = 1/(1-Z)² pour (f2)

L’expression (12) a une signification opérationnelle for intéressante. Soient:

f : la fonction d’input qui fournit une impulsion unitaire à l’instant "0", puis plus rien
(c’était le cas (a) de la Figure 15) ; 

g : La fonction d’output; 

h : l’opérateur affectant la série;

k : l’opérateur de décalage de k unités.

Le processus consiste à saisir chaque fois cette unité et l’ajouter telle quelle (h=1) à
l’impulsion suivante qui arrive; elle serait donc "remise en arrière", soit "feed back" en
américain, ce qui est porté à la Figure 16 – qui améliore la Figure 15 :

Figure 16. Foncteurs et feed-back

Le processus résultant est bien sûr le fameux "feed-back", dans sa version le plus élémen-
taire. C’est là que s’exercera le génie de la transformée, mais il faut être attentif à la façon
dont le temps (et ses indices) se passe, en se rappelant la Figure 1. Ici f est génératrice
d’une séquence. L’impulsion de valeur 1 arrive en k=0; la suivante, qui vaut zéro, arrive
en k=1 et il en va de même pour la suite. 

• Si le processus était réel, donc un flux physique, ce seul "1" serait fourni, suivi par des
zéros (1, 0,0,0,...) ; il passe par un foncteur neutre (ici b0=1), puis il serait saisi à la sor-
tie et "remis dedans", ce qui ne donne pas un output 1, 1, 1,... On continue comme
cela à tourner en rond (ce qui donne une "loop" en anglais) tant qu’un bienfaiteur n’a
pas cassé le jouet.

• La Figure 16 montre que ce processus n’est pas réel mais n’est qu’un modèle . 

En effet, c’est un signal qui est saisi à l’output et transmis par un capteur (et pas par un
"voleur de flux"); ce signal est composé avec l’input pour soumettre un nouveau
signal aux foncteurs et poursuivre le processus en tant qu’output. Du point de vue
temporel, le processus "patine" sur place en quelque sorte et, effectivement, l’expres-
sion (12) ne présente pas d’argument temporel explicite – la formulation est algé-
brique et non plus dynamique. 

Générateur Récepteur

1, 1, 1,... 
Foncteurs

y(k)= 1, 1, 1, ...
 b0=1

h1

f
u(k)= 1, 0, 0, ...
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Le modèle du feed-back est donc un modèle de traitement de signaux ; on verra un beau
jour, pour confirmer cela plus pratiquement, que le feed-back est un processus dont la
rétromettance est à faible énergie comparativement à l’énergie du chemin prospectif prin-
cipal.

Ce qui vient d’être dit pour le cas le plus élémentaire (celui de l’impulsion) est généralisé
pour les signaux d’inputs moins naïfs, dont quelques exemples seront présentés. On peut
d’ailleurs engendrer les autres à partir de compositions de ce "module" de base.

Mais alors, au sens littéral, est-ce qu’on a "perdu son temps"? La réponse est non: son
expression a été formulée d’une nouvelle façon concentrée, et on peut le libérer par la
transposée inverse, c’est-à-dire revenir dans le domaine temporel. Ceci est exprimé par la
fonction d’output dans le domaine temporel [g(k)] ; à l’issue de la transformée, on sait
comment il se comporterait dans la suite si on le laissait filer. 

3.2.6 Du bon usage de F(Z) 

a Linéarité-additivité

Soient deux fonctions génératrices de séquences numériques f(k) et g(k), et deux scalaires
a et b. La transformée-z de toute combinaison linéaire h(k) = af(k)+bg(k) est additive:

Voilà qui règle les comptes du design en parallèle. 

b Série et produit

Soit une fonction génératrice de séquences numériques f(k) et soit g(k) l’ouput du pro-
cessus. L’input subit deux transformations successives, gérées respectivement par les
foncteurs h1(k) et h2(k). Dans ce cas, on l’a dit, la composition est multiplicative, et cette
opération est commutative sur les transformées, qui sont algébriques. La Figure 17
montre le cas le plus simple d’un couplage de deux transformées. Avec un peu d’adresse,
mais beaucoup plus de clarté et moins de charge visuelle, on peut faire de façon équiva-
lente toutes les simplifications de configurations algébriques telles qu’elles ont été présen-
tées sur le Tableau 2 des «Modèles de Processus».

Les nœuds d’un tel graphe forment la composition des signaux (par exemple en tant que
concentrateur, tel un opérateur d’addition) où ils rendent compte alors de la valeur de la
variable ainsi formée. Ils sont aussi distributeurs de cette valeur dans d’autres branches. 

Sur les arcs s’effectuent les transformations F (ici les transformées des opérateurs h), qui
sont les "blocs" dans les configurations par... blocs. Celles-ci ont une mission de repré-
sentation d’équations algébriques simultanées mises dans un ordre qui explicite la forma-
tion de valeurs de variables à partir de séquences de signaux reçus via d’autres variables.
L’algèbre des configurations ne "résout" pas, mais apporte les transformations qui
amènent à une formulation "standard", de solution déjà connue. 

H Z  af k  bg k + Z k–

–



 a f k Z k– b g k Z k–+ aF Z  bG Z += = =



Les transformées F-31
Figure 17. Réduction d’un couplage de transformées

Cette dualité par laquelle les transformations sont soit sur les arcs, soit dans les blocs, se
retrouve lors de la modélisation de problèmes des EAH lorsqu’on présente les choses
d’une part selon les configurations par blocs et d’autre part selon les graphes d’influence, vus
dans l’exposé sur «La Systémographie». Lorsqu’il s’agit de description de processus, le
graphe d’influence, même s’il comporte des boucles, se doit donc de donner un sens de lec-
ture du modèle. Si cela n’est pas possible, la configuration est invalide ou ne représente
pas un processus, mais seulement une architecture statique interactive dans laquelle le
passage du temps ne peut pas être rendu explicite. 

On retrouve aussi cette dualité dans les représentations de processus de production appe-
lés les "GRAFCET", en relation avec l’OFFSET, Association Française de Cybernétique
Économique et Technique, qui en fournit les publications.

c Les fonctions puissances

Soit à exprimer la transformée de f(k)=wk, pour k>=0:

(14)  si |Z|>w, sinon diverge.

Ceci décrit en effet une série géométrique de raison r = w.Z-1, d’où on a déduit la trans-
formée (14), et qui a pour condition de convergence que |r|<=1. On fait de la sorte
apparaître des "pôles", les racines du polynôme qui annulent le dénominateur – font
diverger.
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Atteindre ces pôles d’ici ferait une excursion dans des contrées trop froides, mais on peut
en voir un d’ici en grimpant sur l’expression (14): si Z est interprétée comme une variable
complexe, la somme diverge pour |Z|=w, le dénominateur devenant nul. Faire tendre Z
vers 2w montre en revanche une convergence vers (½)k = 2. 

d Le produit de convolution

L’expression (14) est écrite ici avec "w" pour faire référence à la "somme de pondéra-
tion", présentée avec la somme de convolution. Ceci va fournir une propriété fondamen-
tale des transformées à savoir que dans le domaine des transformées, la fonction de réponse
G(Z) est le produit de la séquence de pondération H(Z) par la fonction d’input F(Z):

(15) G(Z) = H(Z).F(Z)

Z–Réponse = Z–Pondération . Z–Input

Il est remarquable que la propriété (15) soit valide quelle que soit la fonction f d’input.
L’exemple le plus élémentaire suffira donc pour l’illustrer. Soit une fonction génératrice
d’input qui soit simplement l’ajout d’une unité, u(k)=1 pour k0. Sa transformée est 1/
(1-z)-1. Dès lors, la transformée de la réponse est bien:

(16)

La transformation inverse de (16) donne la réponse (17) dans le domaine temporel :

(17) 

Ce résultat (17) est conforme à celui qui a été obtenu par convolution; l’exemple donné
ci-dessus est en effet explicitement:

Celui-ci est toutefois plus direct et élégant et surtout peut être appliqué à des fonctions
d’input multiples et sophistiquées.

e Expressions des translations

L’expression de la transformée d’une translation de k périodes antérieures s’obtient cor-
rectement en construisant une suite gn obtenue en effectuant une translation vers la
droite de la série fn originale; à cette fin, la série décalée est constituée par le produit de la
série originale par une fonction d’échelon unitaire un-k qui n’est non-nulle que k inter-
valles de temps plus tard. 

La nouvelle série est donc gn=fn-k.un-k; elle se définit par:

La Figure 18 fait déraper les signaux, ce que les mathématiques appellent une translation.

G Z  H Z F Z  l

l wz
l–

–
------------------ l

l z
l–

–
-------------- l

l w–
------------ l

l z
l–

–
-------------- w

l wz
l–

–
------------------–= = =

g k  l w
k l+

–
l w–

--------------------=

h k j– f j 
j 0=

k

 H Z F Z 

gn
0 si n k

fn k– si n k



=
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Figure 18. Expression d’une translation de séries

La transformée est :

Dès lors, 

(18)

Le cas particulier de k=1, c’est-à-dire le décalage d’une unité de temps de la série tempo-
relle, implique donc la pré-multiplication par Z-1, soit : Z-1F(z). 

3.3 Applications de l’expression de la translation droite

L’expression des décalages par la transformée-z permet de multiples développements,
précisément en rendant algébrique le traitement des repères temporels. De cette variété,
on extrait ci-dessous trois petits exemples, choisis parce qu’ils sont associés à des proces-
sus en économétrie et en gestion. Il s’agit des modèles auto-régressifs – déjà passés de
mode, donc moflés sans délibération – du "signal Morse", de l’opérateur "hold", et de z
en tant que marqueur temporel.

3.3.1 Le signal "Morse"

Un "trait Morse" pn(k) – permettant l’usage du fameux code de télécommunication – est
une suite formée par un signal d’amplitude unitaire et de largeur k. Il est donc défini
mathématiquement par:

n=0 1 2 3 4 5 ...-1

Signal fn

n6 n=0 ... nn=k

k

Signal fn-k un-k

G z  gn z
n–

n 0=



 fn k– un k– z
n– 

n 0=



= =

f0z
k–

f0z
k– l–

f0z
k– 2– + + +=

z
k–

f0z f0z
l– 

f0z
2–  + + + =

Z fn k– un k–  Z
k–
F Z =

pn k  l pour n 0 l 2  k l–   =
0 pour n k k l+ k 2+   =




=
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Cette suite est obtenue en soustrayant d’un signal unitaire u(n) ce même signal décalé de
k unités vers la droite, ce qui se voit sur la Figure 19.

Figure 19. Représentation d’un trait Morse

Comme on a obtenu que la transformée du signal u(n) est z/(z-1), on a:

(19)

A présent qu’on dispose de (19), on peut se permettre de faire des tas de choses pas
convenables, y compris envoyer des messages en Morse (ou SMS). Comme cas particu-
liers, on retrouve des petits êtres familiers:

• Si le trait est de largeur k=1, on retrouve l’impulsion unitaire n=1 en n=0. Mais il est
plus amusant de la pousser un peu vers la droite, et définir n-1, c’est-à-dire:

n-1 si n=1 et n-1=0 si n 1

Il suffit de faire k=1 dans l’expression (19), puis d’appliquer la translation droite, d’où:

(20) Z[n-1)] = z-1

• L’impulsion unitaire à l’origine, donc pour n=0, se fait en faisant... n=0. Ainsi :

Z[0] = z-0= 1

Cette élégance et cette sobriété donnent de l’aisance d’interprétation à cette variable opé-
rationnelle désignée par z.

3.3.2 L’opérateur "hold"

L’opérateur dit "zéro hold" en américain effectue une modulation discrète d’un signal
continu en conservant la valeur échantillonnée pendant un intervalle de longueur T (dans
les notations de cette section). 

La Figure 20 montre un peu naïvement si cela se passe bien; le modèle mathématique
permettant de l’obtenir est une exploitation des différences analogue à celui du trait
"Morse".

n=0
...

nn=k

Signal pn(k) = un-un-k

k

Z pn k   z
z l–
---------- l z

k–
–  z

k
l–

z
k

z
k l–

–
----------------------==
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Figure 20. Opérateur "hold": modulation discrète d’un signal continu

La portée pratique de cet exploit est importante en ingénierie. En effet, le contrôle de
processus (réels, industriels) se conduit par un signal de commande appliqué à un dispo-
sitif physique et permettant la correction d’écart par rapport à une référence. L’objet d’un
tel système de contrôle est de trouver une forme fonctionnelle du signal de contrôle
e1(k), à savoir la relation entre le signal de valeur (fonction) de référence r(t) et la valeur
observée de c(t) qui soit à même de maîtriser le comportement de c(t) dans le temps.

Ce contrôle se réalise effectivement par une (ou plusieurs) variable décisionnelle ou
"manipulable", désignée par m(t) en tant que fonction temporelle continue. Cette variable
(souvent un vecteur) est appliquée au processus pour donner à celui-ci (désigné par c(t))
un comportement plus conforme à une référence donnée r(t).

3.3.3 L’argument z en tant que marqueur temporel

Lorsqu’on considère une fonction de variables, on a une expression par laquelle les éléments
entrant dans cette fonction sont connectés par des opérateurs. Ainsi en est-il typique-
ment des polynômes impliquant des puissances de l’argument, disons f(x) = b0 + b1 x1 +
b3x3 - b7x7, ou ce qu’on veut. Le tout est composé, et peu importe l’ordre des termes
présents, sinon la logique visuelle de l’expression. 

Lorsqu’on parle des séquences – le cas de cette section – on a pris la précaution de qualifier
"f" de fonction génératrice des valeurs, lesquelles entrent dans le processus dans un ordre
déterminé, et cet ordre est pertinent. Il convient donc d’avoir un indicateur de la place
qu’occupe chaque terme de la série, et de pouvoir conserver ou reproduire cette indica-
tion. La lecture de la définition montre que c’est l’exposant de Z qui indique cette place
dans la séquence..."cet élément est situé il y a mon exposant de décalages d’indice". Mais
attention: 

• S’il s’agit de repères d’une séquence, c’est-à-dire des valeurs qui arrivent dans l’ordre a,
b, c, d,... , le d arrive avec un décalage de 3 unités; si le temps a passé, et que ce sont des
intervalles, d arrive trois périodes plus tard que a.

• S’il s’agit d’une série chronologique, en revanche, d est "vieux" de trois périodes de
temps, disons trois semaines, par rapport à "a"; cela veut dire, dans le temps réel, qu’il
est déjà passé par ici il y a trois semaines, alors que a arrive seulement "maintenant".

0 T 2T 3T 4T 5T 6T 7T 8T 9T-T

r(t)

c(t)Signal

Temps
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Comme il est antérieur, d pourrait alors être prédictif de a, ce qui se passe d’ailleurs
dans les modèles de prédiction auto-régressifs.

La Figure 21 expose une petite collection de transformées de décalages. 

Figure 21. Graphe de flux d’équations aux différences

Le décalage prospectif, Z[ f(k+j)], a aussi cette élégante sobriété et interprétation: 

(21)  Z[f(k+1)] = z-1.[fT(t) - f(0)]

3.3.4 Somme de fonctions génératrices

L’expression de la transformée du décalage, (21) ci-dessus, permet d’exprimer directe-
ment la transformée d’une somme, soit : 

pour k=0, 1, 2,...

La transformée s’obtient en notant que:

g(k) - g(k-1) = f(k), où g(k)=0 pour k<0. 

Appliquant (21), on a:

Z[f(k)] = Z [g(k) - g(k-1)]

F(z) = G(z) - Z-1G(Z),

g(k) = f(k) g(k)

Équations avec décalages hT
1Graphes de flux et

f(k)
1

g(k)f(k)

g(k)

f2(k)

bZg(k) = b f(k-1)

g(k) = b g(k-1)

bZ

1

g(k) = bg(k-1) + f(k-3)
1Z3

f(k)

Z

g(k)
1/(1-bZ)

ou:

g(k)

g(k) = f(k-1) + f(k-2)

g(k) = f1(k-1) + f2(k-2)

Z
f(k)

Z²

g(k)

g(k)

f1(k) Z

Z²

Graphes de flux et

g k  f k 
j 0=

k

=



Les transformées F-37
Ceci conduit au résultat (22):

(22) dans le domaine de convergence |Z|>R-

3.3.5 Les différences rétrospectives

La différence rétrospective s’écrit généralement par l’opérateur de gradient:

f(k) = f(k) - f(k-1)

La transformée s’obtient en appliquant directement le décalage:

(23) Z [f(k)] = 1.F(Z) -Z-1F(Z) = (1-Z-1)F(Z)

Par induction, (23) se généralise à (24):

(24) Z [mf(k)] = (1-Z-1)mF(Z)

Les différences prospectives, soit f(k+m) - f(k), impliquent (Z-1)m, et sont moins utili-
sées. Tant mieux.

Le résultat (24) permet d’aborder sereinement les équations linéaires aux différences, où
la dynamique de la fonction-réponse, g(k), est auto-régressive et influencée par une
séquence pondérée des inputs u(k) décalés. Cette formulation date de la section 1, d’où
elle est reprise ici en (25) avec ses indices "t":

(25) yt - a1yt-1 - a2yt-2 - ... - anyt-n = b0ut + b1ut-1 + b2ut-2 + ...+ bn-1ut-n+1

Il suffit d’écrire les transformées Y(Z) et U(Z), que l’on met en évidence, pour le temps
t="maintenant", puis les opérateurs de décalages, ce qui aboutira à (26):

Y(Z) [1+a1Z-1+a2Z-2 + ... +anZ-n] = U(Z) [b0+b1Z-1+b2Z-2 + ... +bnZ-n]

Y(Z) = [b0+b1Z-1+b2Z-2 + ... +bnZ-n] / [1+a1Z-1+a2Z-2 + ... +anZ-n] U(Z) 

(26) Y(Z) = H(Z).U(Z) et on a bien la fonction de transfert H(Z) = Y(Z) / U(Z)

La résolution temporelle se fait donc par des opérations algébriques appliquées aux
transformées; pour connaître ensuite le comportement de la série temporelle résultante,
le truc classique est d’effectuer le rapport des deux polynômes, trouver les racines, puis
arroser et laisser pousser la solution qui devrait bientôt bourgeonner. Cependant, c’est si
long et ennuyeux que l’on ne fait faire cela que par des élèves. 

3.3.6 La transformée inverse 

L’inversion de la transformée sert à exprimer, et porter en graphique, le comportement
de la série d’ouput dans l’espace temporel, ce qui est évidemment le but de l’analyse du
système dynamique. Pour ce faire, on utilise les tables de transformées. Épanouies dans
les Golden Sexties, ces tables sont si copieusement garnies qu’on trouve peu de fonctions
qui ne figurent pas à leur menu. 

G Z  Z

Z l–
---------- F Z =
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Par exemple C.S. BEIGHTLER & al. «A Short Table of Z-transforms and generating
Functions», Operations Research, Vol. 9, 4, 1961. Il est dommage cependant de faire tant de
si belle systémique puis de se contenter d’un mode d’emploi – c’est comme apprendre
l’informatique puis utiliser Windows... 

De toute façon, il faut torturer les expressions de la fonction-z de transfert jusqu’à ce
qu’elles se mettent à table. Alors on n’en montre à présent qu’un seul truc, celui des poly-
nômes, puis on s’occupe d’autre chose.

Lorsque Z- se présente comme une fraction rationnelle, il suffit de diviser le numérateur
par le dénominateur pour obtenir une série en z-1 dont les coefficients sont les valeurs de
f(nT) désirées. Soit l’exemple le plus simple:

(a)

Effectuant la division, on obtient:

(b) Z[f(t)] = 1.z0+0,5.z-1+0,25.z-2+0,125.z-3+ ...

f(t) = (½)0.(t)+(½)1(t-T)+(½)2(t-2T)+ (½)3.(t-3T)+ ...

f(t) =1.(t)+0,5.(t-T)+0,25.(t-2T)+ 0,125.(t-3T)+ ...

La divison de (a) paraît farfelue. On peut pourtant commencer:

z/(z-½)  1+ reste ½/(z-½)  ½.z-1 + reste 1/4.z-1 / (z-½)

On a donc jusqu’ici :

1 + ½z-1 + 1/4 z-1/(z-½) + ... dont le dernier rapport s’arrange comme suit :

(c)

De la sorte, on voit comment se dessine la suite avancée en (b) ci-dessus.

Lorsque les degrés du numérateur et du dénominateur sont plus élevés, il est préconisé
d’utiliser la formule itérative suivante:

où:

avec ak=0 pour k>n

En effet, il suffit de partir de l’égalité:

Z f t   z
z l 2–
---------------=

z
z l 2–
----------------- z z

2


z l 2–  z
2


-------------------------------- z

l–

z
l–

l 2 z
2–

–
------------------------------------= =

Z f t  
a0 alz

l–
a2z

2–  anz
n–

+ + + +

l blz
l–

b2z
2–  bmz

m–
+ + + +

-------------------------------------------------------------------------------=

s0 slz
l–

s2z
2– + + +=

sk ak bi sk i–
i l=

k

–=

a0 alz
l–

a2z
2–  anz

n–
+ + + + l blz

l–  bmz
m–

+ + +  s0 slz
l– + + =



Les transformées F-39
On en tire:

Et voilà le mode d’emploi officiel ; le vrai consiste, comme toujours depuis qu’existent les
examens écrits, à recopier le résultat de quelqu’un qui l’a déjà obtenu.

3.3.7 Conditions de stabilité

Une contribution majeure de l’exploitation des transformées est de prédire le comporte-
ment des fonctions temporelles soumises à un input, avec pour thème privilégié la stabi-
lité de cet output. Ceci inclut toute une panoplie de domaines d’études, entre autres tout
ce qui se formule en équations différentielles ou aux différences, la stabilité des régimes
périodiques ou encore la convergence de processus itératifs de calcul numérique par les
ordinateurs. 

On n’a pas besoin de tout cela ici – ce parcours est avant tout fait pour renseigner sur les
rites de certaines sectes infiltrant des systèmes dans la gestion; voici seulement le principe
général du test standard de stabilité pour les systèmes à coefficients constants. 

Dans ce contexte, un système linéaire discret est considéré comme stable si à tous les
inputs bornés correspondent des inputs bornés. Cette propriété s’explore en séparant
l’ouput – donc la réponse du système aux inputs – en deux parties: d’une part celle qui
est associée au régime final (due à la fonction d’input) et d’autre part celle qui est associée
au régime transitoire. 

La transformée de l’output s’exprime donc par le produit de la transformée de l’input par
la transformée de la fonction de transfert. Celles-ci sont à exprimer par le rapport de
deux polynômes, dont la factorisation donne au dénominateur des facteurs en "(z-rj)".
Ces rj sont les "pôles" de la fonction: le dénominateur s’annule pour ces valeurs (ce qui
leur fait porter le nom de "valeurs singulières"), et fait exploser la fonction de transfert.
L’effet est immédiat: la dynamique hésite, se pâme dans des états transitoires, oscille
entre plusieurs directions, puis les pôles la font diverger et soudain, par une aspiration
irrésistible, emportent le tout, sentiments, pique-nique et carte de banque, vers un infini
qui brille au bout du tunnel.

Pour éviter les instabilités et les divergences extrêmes qui viennent d’être évoquées, il
faut et il suffit de rester modeste : si on ne considère que le cas linéaire courant, il faut et
suffit de garder son "z" dans son rayon de convergence, soit, en valeur réelle:

|z| 1

3.3.8 Valeurs initiale et finale 

L’apport de l’expression de la valeur initiale et de la valeur finale est de permettre de
connaître la valeur d’origine de la série, f(0), lorsque sa transformée (unilatérale) est
connue. De même, on peut s’intéresser à sa limite pour k . 

ak bi sk i–
0

k

 sk bi sk i–
l

k

+=
12/12/12



CDB

 Analyses de processus F-40
Se rappelant que, sur la suite fn définie sur les entiers positifs (0, 1, 2, ...), la fonction F(Z)
a été définie en (23) rappelée ci-dessous:

(23)

De (25), et de la convergence pour tout |z|>R-, il résulte que: 

Cette propriété sera exploitée explicitement à la section 4.2.2 pour exprimer les biais à
long terme de modèles linéaires d’extrapolation.

3.3.9 Expressions canoniques des transformées de modèles linéaires

L’extension à plusieurs inputs et outputs s’exprime en les vecteurs respectifs et en adap-
tant les dimensions matricielles des opérateurs en conséquence de cette extension de
l’espace de référence; le modèle linéaire a dès lors des opérateurs matriciels. Ceci autorise
une même écriture synthétique pour un processus temporel plus général, exprimé en dis-
cret par (27)-(28) qui reprennent le (17)-(18) initié à la section 1.3.4 :

(27) xk+1 = A xk + B uk

(28) yk    = C xk + d uk 

Ceci forme les expressions dites canoniques des transformées de modèles linéaires, dont les
évolutions temporelles sont les suivantes respectivement en discrète et continue:

zY(z) - z y(t0) = b Y(z) + bR(z)

sY(s) - y(t0) = b Y(s) + bU(s)

C’est une synthèse des apports formels parcourus dans cette section. Leur construction
plus systématique et leur exploitation est une référence commune aux trois exposés sur
«Les dynamiques» du Tome Nord. 

3.4 Résumé de l’exploitation des transformées

3.4.1 Propriétés des graphes de flux

Les propriétés des graphes de flux de transformées permettent des simplifications du
design processus en interaction par la composition algébrique des signaux, donc contri-
buent à la réduction de modèles. Les grands classiques sont évidemment les processus en
série, en parallèle et en feed-back. 

La condition de validité est d’obtenir la même fonction de transfert ; la portée pratique de
cette condition est que, si l’on soumet un input au processus, l’expression de l’ouput soit
la même quelle que soit la configuration choisie pour décrire le processus.

F z  fk Z
k–

k 0=



 f0 fl z
l– f2 z

2– + + += =

f 0  F z 
k 
lim=
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Cette modélisation est une aide à l’analyse de système par investigation formelle des pro-
priétés du système. La procédure traditionnelle à cette fin est de:

• Déterminer les équations ou la fonction de transfert de chaque composante du
processus (elles ne sont pas uniques);

• Choisir un modèle de représentation, par exemple la configuration par blocs, ou le
graphe de flux de signaux;

• Formuler le modèle en connectant les composantes (noeuds, branches, blocs) de
façon appropriée; notons que cette approche "modulaire" convient à l’analyse, mais
qu’elle est utilisée pour faire le "design";

• Déterminer les caractéristiques du système, avec pour objectifs de connaissance:

• Les propriétés de stabilité;
• Le régime en état stabilisé;
• Le comportement et la longueur de l’état transitoire.

Les méthodes classiques, de présentation graphique mais reposant sur l’analyse mathé-
matique, pouvant aider l’analyste sont:

• La méthode de localisation des racines (le "root-locus"), c’est-à-dire les "pôles" de la
fonction de transfert ; les suivantes sont dans le domaine des fréquences;

• Les graphes de NYQUIST, procédures graphiques visant à diagnostiquer les stabilités
absolue et relative des systèmes de contrôle à boucle fermée, par le graphique de la
fonction de transfert du système à feed-back mis sous forme canonique;

• La représentation de BODE, s’intéressant à l’angle de phase de la fonction de réponse;
• Les chartes de NICHOLS représentant les fonctions fréquentielles de réponse;
• On dispose de certains théorèmes de stabilité, telles que les conditions LYAPOUNOV,

mais celles-ci ne seront dévoilées que par l’accès aux archives du KGB – donc pas
pour un Lecteur très ordinaire. 

L’analyse de ces propriétés est incomparablement plus simple lorsque les systèmes dyna-
miques sont linéaires – typiquement les équations aux différences ou différentielles – ou
qu’on peut les ramener à la linéarité par des transformations, approximations et triche-
ries. 

3.4.2 Performances des processus

Les performances de processus formels sont spécifiques selon le domaine (temporel ou fré-
quentiel) de leur expression. Elles s’expriment généralement en termes de la réponse; elles
concernent trois propriétés importantes des systèmes dynamiques:

• La vitesse de réponse;
• La stabilité relative;
• L’adéquation, la précision, l’erreur relative tolérée.

• Dans le cas des filtres, la performance s’exprime, presque par la définition d’un filtre,
en termes de minimisation de l’interférence par rapport au signal, la tradition faisant le
rapport signal/bruit. Des propriétés (requises pour que le filtre soit admissible) sont le
fait d’être convergent et non-biaisé;
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• Dans le cas de l’ajustement statistique, la performance s’exprime en termes de variance
des résidus, ce qui équivaut à la qualité de la description du modèle par rapport aux
observations;

• Dans le cas des morphions, et surtout des bougies japonaises (décrites dans les «
Modèles de processus»), les critères sont moins incontestables, en raison de la compo-
sante subjective des morphions. En fait le critère est plutôt associé à la procédure,
c’est-à-dire au nombre d’itérations de l’heuristique servant à les diagnostiquer. 

3.4.3 Critères dans le domaine temporel 

Dans le domaine temporel, les critères usuels concernent d’une part les comportements
transitoires, normalement décrits en termes de réponse à des fonctions d’inputs élémen-
taires, telles que l’impulsion, la marche, la rampe, la parabole et, d’autre part, le compor-
tement final, c’est-à-dire en régime définitif :

• Le délai, souvent défini par le temps requis pour que la réponse atteigne un pourcen-
tage donné, par exemple 50%, de sa valeur finale;

• Le temps de croissance, ou temps requis pour que la réponse passe de a% (disons 10%) à
b% (disons 90%) de sa valeur finale. 

• Le temps d’établissement, c’est-à-dire le temps requis pour que la réponse à un input
unitaire reste dans des bornes spécifiées;

• La constante temporelle prédominante mesure le caractère décroissant de la réponse transi-
toire. 

Du point de vue de l’état final, les propriétés sont:

• L’overshoot qui est une mesure de stabilité relative. C’est la différence maximale entre
les solutions transitoire et finale pour un input unitaire (il est souvent exprimé en % de
la solution finale) ;

• L’adéquation et la précision concernent les mesures d’erreur de l’état final résultant d’une
application d’input spécifié. Un exemple facile et courant en est donné ici pour l’extra-
polation par le lissage exponentiel qui se vend si bien. 

3.4.4 Critères dans le domaine fréquentiel

• La marge de gain est une mesure de stabilité relative, égale à l’inverse de la valeur de la
fonction de transfert de la boucle ouverte, évaluée à la fréquence à laquelle l’angle de
phase est de - (donc au changement de phase);

• La marge de phase est de 180 degrés plus l’angle de phase de la fonction de transfert – en
boucle ouverte – au gain unitaire; le délai, quant à lui, s’exprime en fréquence
moyenne, mais ne s’interprète pas de façon évidente. 

• La largeur de bande est l’intervalle de fréquence de l’input pour lequel le système répond
de façon satisfaisante (par exemple de 20 à 20000 cycles par secondes pour un ampli-
ficateur dit de haute fidélité). 
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La contribution de ces études de performance est de faire du design par analyse, lequel est
accompli en modifiant les caractéristiques d’un système existant en affectant sa structure;
le schéma général de cette procédure figure dans «La Genèse», sous le titre «Analyse d’un
système-objet». Le but est de lui faire rencontrer des spécifications de performances,
celles-ci sont exprimées par des variables de références et des contraintes. 

On en verra une généralisation via la téléonomie et les "changements désirables et fai-
sables" lors de l’investigation et l’intervention dans les Ensembles d’Activités Humaines,
thèmes qui ont le plus de succès dans le Tome d’Ouessant.

4 Deux modèles de processus en gestion

4.1 La fonction de trésorerie

4.1.1 Formulation de mouvements de liquidités

Soit L le niveau de Liquidités monétaires de l’Association de Systémique "Joie et Santé".
Ce niveau au moment k se constitue par le niveau précédent (Lk-1) plus les manipulations
(mk) moins les dépenses (dk). Ces notations ne sont pas au hasard: 

• "L" tient pour "Level" en américain. Cette variable représente donc un accumulateur
dans le domaine discret (ce serait un intégrateur dans sa version continue);

• "m" indique une variable "manipulable", c’est-à-dire, selon la tradition écrite, une
variable de commande . Elle sera plus explicite à la section 7 mais, dans le cas présent, il
s’agit simplement de retraits ou dépôts dans les comptes de réserve; ses unités sont
donc celles d’un flux, une quantité par unité de temps;

• "d" indique les dépenses, qui sont un flux exogène, c’est-à-dire non maîtrisable par le
trésorier – le "contrôleur" du système. Quand il sera adulte, ce d deviendra un jour une
"driving matrix". 

La description de mouvements de liquidités est donc:

(a) Lk = Lk-1 + mk - dk 

Quand à la politique de contrôle, elle consisterait à faire des ponctions ou retraits de
réserves de façon à garder le niveau de trésorerie proche de zéro. Une formulation très
simple est une moyenne mobile des derniers niveaux, disons les deux derniers:

(b) mk = - ½[Lk-1 +Lk-2]

Comme ce sont les dépenses dk qui "tirent" le processus, et que c’est la variable de déci-
sion mk qui intéresse le gestionnaire, celles-ci seront respectivement l’input et l’ouput du
processus. C’est ce que montre la Figure 22, où:

• L’impulsion dk entre avec le signe négatif ;
12/12/12



CDB

 Analyses de processus F-44
• L’accumulateur Lk est la rétromettance élémentaire conservant une unité lorsqu’elle
est ajoutée, c’est-à-dire la réponse à une impulsion unitaire 1, 0,0,... soit L(Z)= 1/(1-Z).

Figure 22. Réduction du graphe de flux de... liquidités

La fonction de transfert est écrite H(z). Il convient à présent de l’élucider pour exprimer
la transformée inverse, dans le domaine temporel. A cette fin, on effectue la "longue divi-
sion", de ces deux polynômes, et on retient les coefficients du quotient comme éléments
séquentiels de la série m(k) résultante. Ces coefficients donnent:

(c) m(k) = 0, 1/2, 3/4, 1/8, -5/6, -7/32, 3/64, ...

Il est manifeste que, sous l’effet de l’impulsion, (c) vacille un peu d’un signe à l’autre, mais
ses oscillations s’amortissent, et le processus est donc asymptotiquement stable. 

Mathématiquement, cette propriété est obtenue sous la condition:

Tandis qu’on a déjà vu que, de l’autre côté de... l’infini : 
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4.1.2 La variété des temps

L’étude et la formulation de modèles de trésorerie demande une incursion générale du
processus global de l’EAH, de l’établissement concerné, et spécifiquement ceux qui
engendrent des flux ayant leurs équivalents monétaires. Bien entendu, quelles qu’en
soient les voies et la complexité, le regard ne s’allume que lorsqu’il se penche in fine sur
ce qui reste concrètement dans la caisse, en fait le solde de trésorerie nette; celui-ci peut
être constitué des divers instruments de paiement disponibles dans l’immédiat. Ce solde
est la résultante en temps réel de multiples processus qui ont des "timings" différents, ne
forment pas des cycles imbriqués, et impliquent à la fois les engagements et les mouve-
ments courants de l’exploitation. 

Plus généralement, la doctrine de la trésorerie suggère un partitionnement en "timings"
de plus en plus serrés que l’on peut résumer par le Tableau 3 . La hiérarchie temporelle
peut se construire soit par type d’activité – de la basse à la haute fréquence, ce que fera un
peu la Figure 23 –, soit par type de transaction financière, caractérisée par le "terme" tem-
porel, ce qui est le cas du Tableau 3. Il n’y a pas de "cycle" puisque les échéanciers se
créent et se recouvrent continuellement.

Quant à l’approche du "processus global", il y en a plusieurs exemples particulièrement
spectaculaires dans ces exposés, tels le processus du patient hospitalier (à la fin des
«Modèles de Processus»), ou celui d’une entreprise de pompe de chaleur (dans «Le
Domaine de la gestion»), ou encore les schémas d’intégration de données d’une ville,
figurant dans les «Processus et synthèses d’information» du Tome d’Ouessant. 

Tableau 3. Variations de trésorerie selon leur timing

Patrimoine Finance à M.T. Exploitation 

P + P - F + F - E+ E-

Bénéfices Pertes Emprunts Placements Recettes
d’exploitation

Dépenses d’-
exploitation

Amortissements Reprises sur 
amortissements; 
réduc. de valeurs

Crédits
obtenus

Avances 
aux tiers

Emprunts
à court terme

Placements
à court terme

Emprunts à L.T. Remboursements Avances
reçues

Remboursements
de crédits

Cessions 
d’immobilisés

Transferts 
aux réserves

Leasings 
obtenus

Subsides; augmentation
de capital en espèces

Investissements;
Reprises immobilisés

Aléas devises Aléas fiabilité clients

Avances permanentes 
des associés

Bénéfice distribué
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Présentement, plus focalisé et dédicacé au problème de la trésorerie, on retrouve page 29
PH. KNEIPE, Gestion de la trésorerie de l’entreprise, (De Boeck Université, Bruxelles, 1987)
une «Figure 2» ayant pour titre «Schéma de synthèse de l’évolution temporelle des
phases du cycle d’exploitation». Ce schéma ne concerne que l"entreprise" typique de pro-
duction-vente, mais a au moins le mérite de la clarté. La Figure 23 essaie de refaire correc-
tement cette présentation, car l’ouvrage ne paraît plus aisément disponible, mais comme
toujours seule la lecture de la référence citée peut respecter l’apport de cet auteur.

Figure 23. Phases d’une exploitation industrielle du point de vue de la trésorerie
0000

La variété de "timings" de processus d’activités rendrait donc pusillanime de vouloir
confier aux instruments formels de théorie des systèmes la modélisation – puis la maîtrise
et les décisions concernées – de cette tâche très importante de la gestion, vu le nombre de
facteurs, de paramètres et de fenêtres temporelles à prendre en considération si l’on veut
être rigoureux, c’est-à-dire, in fine, "tomber juste" dans les comptes. 

La théorie des systèmes, la modélisation de processus, va-t-elle alors tourner lâchement le
dos là où justement on croyait qu’elle pouvait se rendre utile? La réponse à cette question
angoissante, le "thriller" des systèmes, est dans notre prochain numéro.

T1

Achat

Phases
opérationnelles

Phases
administratives

Phases

Délais

Stockages

Dettes/

Financements

Risques

Durée du cycle
financier lié
à l’exploitation

financières

Créances

matières
premières

Livraison
matières
premières Facture

fournisseur
Paiement
facture
fournisseur

Production
phase 1

Production
phase 2

Vente
client

Facture
client

Encaiss.
facture
client

Approvi-

Mat. premières, Produits Produits

Créances client

Crédit

Devises - et solvabilitéDevises 

Prix d’achat + Prix de vente -

Détériorations de marchandises

Besoin de financement

Livraison
client

T3 T4 T5 T6 T7 T8 T9 T10T2

sionnement

semi-finis finis

Dettes fournisseurs

Crédit
fournisseurs

Livraison

clients

conditionnements

Refait de: «Schéma de synthèse de l’évolution temporelle des phases du cycle d’exploitation» (op.cit. p.29)
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Que non point! On va glisser d’autres morceaux choisis de systémique dans la caisse:

• La mise des éléments de ce Tableau 3, ainsi que d’autres aussi intelligibles, en un
"graphe d’influence";

• Ensuite, répondant à la demande de Lectrices frétillantes, on cédera au caprice d’écrire
un petit modèle naïf de processus temporel avec des conditions initiales;

• Enfin sera dessiné un schéma-type (publié) d’un progiciel de trésorerie standard,
tenant compte de la hiérarchie temporelle. Pour le reste, faudra aller surfer ailleurs.

4.1.3 Graphe d’influence

La Figure 24 est une proposition de graphe d’influence intégrant la plupart des éléments
cités. Il serait fort utile pour formuler un modèle de dynamique des systèmes en gestion
et en faire un simulateur de situations de trésorerie résultant de situations et de décisions
variées. 

Ce n’est toutefois pas un schéma de calcul ; on y lit bien d’ailleurs que plusieurs variables
désignent des facteurs faisant partie du processus mais non des flux et des comptes.

Figure 24. Proposition de graphe d’influence de la trésorerie
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4.1.4 Un mini-modèle de trésorerie

Par esprit d’économie, on va généreusement offrir une petit modèle d’analyse de liquidi-
tés à la désormais célèbre ASLJSIGASRH, Association de Systémique et Loisirs "Joie et
Santé" de l’Institut de Gériatrie d’Anguille-Sous-Roche. Bien sûr, les grands théories et
schémas globaux sont laissés au vestiaire (près des verres à bulles pour mettre le dentier,
sous le crochet pour suspendre la sous-ventrière), mais on s’occupera de la petite caisse
du bar, dérisoire peut être mais sûrement ration de survie de cette éminente Société.

Soit L désignant le niveau ("Level" en anglais) de Liquidités, le trésor disponible en caisse
le dimanche soir après la troisième mi-temps. Ces liquidités forment un stock en écono-
mie, formé par un accumulateur (une intégrale) en systémique. C’est la variable endogène du
modèle, donc résultante des relations traduisant les valeurs des mouvements et des flux.

Les variables sont dites exogènes lorsqu’elles sont fournies au modèle (donc à l’analyste et
au décideur) sans y être engendrées. Elles peuvent être issues de comportements
d’agents, ou de phénomènes extérieurs, mais personne n’en a la maîtrise dans la problé-
matique sous revue.

Les variables sont dites de décision lorsque leurs valeurs peuvent être choisies par l’analyste
(ce sera souvent aux fins de simulation) ou par le décideur (aux fins de traduire une poli-
tique). 

Les paramètres calibrent les relations entre les grandeurs en présence. Le choix ou l’estima-
tion de leurs valeurs est fondé sur diverses considérations dont il est question dans
l’exposé sur les « Modèles de processus», précisément la section sur l’élucidation, et surtout
dans l’exposé sur la « Dynamique de systèmes en gestion». 

Les modèles plus habillés utilisent aussi des variables dites auxiliaires ; les relations
"passent" en quelque sorte par celles-ci pour en exprimer d’autres qui sont des clefs de
l’analyse. Ainsi le nombre de clients peut être requis pour estimer le chiffre d’affaires.

On sera frustré de ne pas en voir de toutes ces couleurs dans le petit machin qui suit,
mais il y en a beaucoup de chatoyantes dans la « Dynamique de systèmes en gestion». En
attendant, le modèle répond au graphe orienté (ni boucle ni interaction) de la Figure 25.

Figure 25. Vilain petit graphe d’influence de la caisse
GGGGraphe

S (Stock)

R (Recettes) L (Caisse)
C (Coûts)

H (Cash)
+

+

+

+

-

-
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4.1.5 Formulation

Le niveau Lk est toujours exprimé par le précédent, Lk-1, plus sa variation:

(1) Lk = Lk-1 + L

La génératrice de la dynamique de la trésorerie est le bar du club. Soit R la recette, qui
croît avec l’avancement de la saison de la pétanque et de la température. Disons que sa
croissance autonome est de 20% par semaine, soit :

(2) Rk = a.Rk-1 

Le paramètre a est exogène, rendant la variable Rk exogène, mise en italique pour cette
raison. Soit que les poivrots paient 40% cash (H), et mettent en ardoise (A) les 60% res-
tants pour la période suivante (Plus sérieux les comptables l’appellent "effets à recevoir",
lesquels résultent du crédit accordé aux clients) :

(3) Hk = b.Rk

Soit un ajustement du stock (en valeur courante) par la moitié de la variation de consom-
mation. Cette politique "rule of thumb" ("règle du pouce") remplace avantageusement,
par son élégante simplicité, des tas de modèles de systèmes qu’on ne comprend jamais:

(4) S = d.(Lk-Lk-1)

Ceci revient à écrire que la valeur du stock (S) est de 50% de la valeur des ventes d’une
période (semaine). Quant au coût des produits vendus, il est de 90% de la recette, soit :

(5) Ck = c.Lk

Réunissant les composantes déposées ci-dessus, on obtient la relation d’évolution tempo-
relle (6) :

(6) Lk = Lk-1 + Hk-1+(1-b).Rk - Ck - Sk

Les paramètres sont constants (il n’est pas écrit ak ou a(t)), de sorte que le modèle est dit
à coefficients constants, ou invariant. Une des implications de cette propriété (outre la
simplicité) est qu’une translation temporelle ne modifie pas le comportement; on aurait
ainsi les mêmes relations quelque soit la saison ou indépendamment de périodes spéci-
fiques. Lorsque la formulation exprime les paramètres avec un indice temporel, elle est
bien sûr qualifiée de variante. Forcément elle est plus compliquée mais plus réaliste. 

Si les paramètres s’ajustent en fonction de valeurs de variables endogènes ou auxiliaires,
le modèle est dit "adaptatif"; ce serait le cas ici si le taux d’ajustement du stock (le para-
mètre d ci-dessus) était modifié en fonction du taux de la consommation. 

Le paramètre b de cette formulation peut être considéré comme décisionnel ; en effet, le
gestionnaire pourrait établir le rapport de créance admissible; il pourrait aussi sur le délai
du crédit, par exemple autoriser s semaines, ce qui impliquerait H = f(Rk-s). Plus généra-
lement, dans un vrai modèle de trésorerie, on sait qu’une des manœuvres du gestionnaire
est de calibrer la relation entre le crédit accordé aux clients et celui accordé par les four-
nisseurs – ce qui a des implications sur le besoin en roulement.
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Le paramètre "d", d’ajustement du stock, est aussi un paramètre de "politique", où seule
est vue ici l’implication sur la caisse, mais, plus généralement se présente aussi toute la
question de la régulation de l’approvisionnement en relation avec les coûts de stockage,
les risques de pénurie et le besoin en fonds de roulement, bref toute une aventure de...
systèmes en gestion.

On peut à présent exprimer l’évolution du niveau de liquidités en remplaçant les variables
auxiliaires par leur expression en fonction de la recette R, qui est le "leader" de cette
petite dynamique:

(7) Lk = Lk-1 +b.Rk + (1-b). Rk-1 - c.Rk - d.Rk + (1-d). Rk-1

Si b = (c+d), alors le coefficient de Rk, la recette actuelle, s’annule, et le modèle n’a plus
de sens; mais cela signifierait que le ratio de crédit au client (b) serait négatif – il devrait
payer cash 40% de plus que le prix – bref, il vaut mieux regarder ce que signifient les
paramètres. Soit ici b=(c+d)-1, ce qui simplifie (7) en (8)

(8) Lk = Lk-1 - Rk + (2-b-d). Rk-1

Posons (2-b-d)= p, de sorte que le modèle se rétrécit en (9) et (10):

(9) Rk = a.Rk-1 

(10) Lk = Lk-1 - Rk + p. Rk-1

Le principe de l’analyse de processus (puis de systèmes, quand on sera adulte) est d’expri-
mer l’output – ce sera le niveau de la caisse – en fonction de l’input (les recettes R) via la
fonction de transfert (H), donc d’arriver en bonne santé à la séquence: R – > H – > L.

4.1.6 Analyse par la transformée-z

Ce type de contrôle élémentaire est pratiqué par des trésoriers qui ont des petits talents
cachés de systémiciens. La "longue division", en revanche, n’a pas été faite ici : on a déjà
dit que c’est un truc si exaspérant et emmerdatoire qu’il est encore responsable de pré-
sence d’élèves de 18 ans dans le cycle inférieur. Sa vertu est cependant de pouvoir lire des
choses simples en se mettant à table devant celle des transformées inverses. La transfor-
mée de (9) est à vue:

(11) RT = 1 / (1-az)

Quant à (10), elle s’accouple en parallèle puis en série selon la Figure 26 :

Figure 26. Graphe de flux de signaux de la caisse
-1

Z
pZ

RT 1 LT
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Le couplage du graphe 25 avec la transformée de l’input donnée par (5) donne:

La division des polynômes fournit la série:

LT = -1 - pz - qz² ... (on fera la suivante, c’est promis).

4.1.7 Les conditions initiales

Des grandeurs indispensables pour lancer un processus sont les conditions initiales, les
valeurs au temps k=0, – mais on ne dit jamais où est cette origine, ou "quand commence
la dynamique". Formellement, elles font surface en exploitant la transformée d’un déca-
lage prospectif, c’est-à-dire, pour les deux variables auto-régressives L et R, l’expression:

(12) Z(Lk+1) = Z-1(LT - L0)

(13) Z(Rk+1) = Z-1(RT - R0)

La formulation trop simpliste oblige à donner artificiellement une valeur initiale à R pour
engendrer son auto-régressivité, mais c’est un flux, qui n’a donc pas de stock de départ;
s’il fallait programmer le modèle par simulation, il faudrait utiliser une variable auxiliaire.
Ceci dit, on verra tout de suite que ceci revient à utiliser un input des recettes qui est
équivalent à une impulsion unitaire initiale. Le truc est d’écrire (12) avec un décalage
prospectif, puis de l’exprimer selon Lk, soit :

Lk+1 = Lk - Rk+1 + p. Rk

(14) Lk = Lk+1 + Rk+1 - p. Rk

Appliquant les transformées du décalage prospectif, soit (12) et (13), on obtient la solu-
tion, illustrée ensuite par la séquence de graphes 27. 

L’expression de l’ouput en fonction des conditions initiales et de l’influence de l’input,
c’est-à-dire la lecture du graphe de flux réduit :

La prémultiplication du premier terme par z/z donne le partitionnement voulu:

(15)

Cette dernière équation peut être représentée selon un système matriciel dans lequel les
inputs sont:

• Les valeurs initiales appliquées à une impulsion unitaire (de transposée 1/(z-1)) ;
• La partie de la fonction de transfert "dynamisant" la transformée de l’input:

(16) yT = HT. xT
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Figure 27. Réduction du graphe de liquidités
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L’expression (16) s’écrit ici :

(17)

Comme la recette est auto-générée par Rk = a.Rk-1, la transformée est :

(18)

L’analyste peut alors exprimer le comportement dans le temps de l’output et sa sensibilité
aux paramètres et valeurs exogènes. 

Soit un essai avec les valeurs suivantes:

• a = 1,2 (croissance de la Recette)
• b = 0,4 (pourcent payé cash)
• c = 0,9 (part du coût dans le prix)
• d = 0,5 (ajustement du stock)
• R0 = 24 (Recette initiale)
• L0 = 30 (Liquidités initiales)

Le développement de (17) est :

(19)
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Entrer par l’input:

Boucler l’auto-régressif :
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l

l z
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–
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Faire le design de (4):

Boucler l’auto-régressif :

Réduire le graphe:
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Pour exprimer la transformée inverse (revenir dans le domaine temporel), on peut faire la
longue division de (19), qui est très courte:

L’identification des numérateurs s’écrit :

A(1-z) + B(1-pz) = -30 + 33z

En exploitant les deux racines, on a:

Pour z=1, B(1-p) = 3, d’où: B = 3/(1-p)

Pour z=1/p, A(1-1/p) = -30+33/p, d’où: A = (33-30p)/(p-1)

Donc, 

On peut voir l’évolution selon différents taux de croissance supposés des recettes, soit le
paramètre p. Ainsi, pour p=1,2, (Rk= 1,2Rk-1), on a: 

 Donc Lk = 39 euros - 15.1,2k

La transformée inverse est un peu naïve, il est vrai, mais dans la vie aussi c’est souvent à
ces demoiselles qui sont les plus naïves qu’il arrive le plus de choses... 

Deux conclusions:

• D’abord, il est ridicule de faire tout cela pour obtenir ce résultat déplorable: la mise de
départ est mangée aux mites; 

• Ensuite le trésorier, ou même la concierge, pouvait dire tout de suite qu’un coût de
90% du prix de vente ne fait pas vivre son homme. Mais si le modèle a pu donner rai-
son à la concierge, c’est qu’il est valide et utile. 

Et toc. Quand on va à une soirée, après tout, peu importe avec laquelle de ces dames on
sort. Ce qui est important, c’est avec laquelle on rentre. 

L
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z l–
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-------------- l z l l,–

l l z–
--------------------+–=
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54
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--------------------------------------+=
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L
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4.1.8 Intégration des données dans un logiciel de trésorerie

Il existe des supports "informatisés" pour aider le trésorier. Déjà un tableur moderne, par
exemple, avec son déroulement temporel horizontal, permet d’y présenter quasi toutes
les grandeurs pertinentes et leur timing, avec l’avantage de la clarté et de la flexibilité.
Cette recommandation réaliste aidera au moins à ne pas se tromper à cause de complica-
tions inutiles, et à ne pas acheter fort cher des programmes tout faits qu’on ne peut ni
adapter, ni changer (car ils sont compilés), ni utiliser parce qu’on n’est pas malin assez. 

Figure 28. Intégration des données dans un logiciel de trésorerie

Ce schéma de la Figure 28 (de P. DERYCK, «Séminaire d’étude de la trésorerie», op.cit., et
PH. KNEIPE, Gestion de la trésorerie de l’entreprise, op. cit., p.34) propose, en hommage à ces
auteurs, une architecture intégrée. Toutefois, elle adopte, dans un souci de cohérence, la
sémiologie graphique de ces exposés-ci.
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Ce schéma a au moins le mérite d’être non seulement claire, mais encore d’un prix abor-
dable puisqu’il est honnêtement piraté. C’est comme le disait SURCOUF le Corsaire: lui-
même avouait qu’il se battait pour l’argent, tandis que les Roastbeefs d’en face préten-
daient le faire pour l’honneur... mais chacun se bat pour ce qu’il n’a pas.

4.2 Application au lissage exponentiel

4.2.1 Formulation du modèle d’extrapolation

Comme les modèles aux différences relèvent de la catégorie des filtres linéaires, il en va
de même pour les méthodes de projection de séries chronologiques fondés sur les struc-
tures autorégressives. Un cas particulier de tels filtres, dont le succès – sinon la perfor-
mance – est justifié par son élégante simplicité, est la famille dite de "lissage exponentiel".
Pour soutenir l’assertion certains modèles pourraient servir à quelque chose, voici une
application de la transformée-z aux deux cas le plus élémentaires de lissage exponentiel. 

Post-scriptum. 

Les cas plus compliqués sont toujours à faire par les élèves, de même que les démonstra-
tions de théorèmes flageolants que les profs n’ont pas trouvées. Ainsi, il est fréquent de
lire: "Étant évidentes, elles seront laissées à l’étudiant au titre d’exercice; suggestion pour
la démonstration: utiliser la théorie des fractales flous dans un espace elliptique de Lobat-
chevski."

Le "lissage exponentiel" est un filtre linéaire fondé sur un modèle auto-régressif utilisé
frénétiquement en gestion pour le lissage et la projection de séries chronologiques. Seule
sa version la plus élémentaire, très connue, sera mentionnée ici, afin d’illustrer un usage
facile de la transformée-z. Quand la version n’est plus élémentaire, elle ne peut d’ailleurs
plus être qualifiée d’"utilisée en gestion"; elle peut devenir scientifique, ou être confiée à
l’économétrie.

Le modèle de base forme un output yt par une variété linéaire de ses propres valeurs
antérieures dont les poids sont exponentiellement décroissants en fonction de l’âge des
valeurs, soit (1) :

yt = a xt + a(1-a)xt-1 + a(1-a)²xt-2 + ... +(1-a)ty0, soit encore:

(1)

Cette expression (1) devrait raviver des souvenirs des Lectrices adeptes de convolutions.
Elle ne diverge pas si 0<a<1; les autres valeurs de a sont évidemment sans intérêt pour la
procédure. Par substitutions récurrentes, on obtient la relation de base:

(2) yt = axt + (1-a)yt-1

Cette relation (2) peut ensuite être exploitée par composition pour former des filtres
d’ordre plus élevé, disons 2 et 3. Au-delà, des procédures plus complexes sont appelées
pour le traitement des séries. 

yt a l a– k
xt k–

k 0=

t l–

 l a– t
y0+ wkxt k–

k 0=

t l–

 w
t
y0+= =
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Le filtre d’ordre 2 se construit par superposition de deux filtres élémentaires, soit :

(3)

La projection par ce modèle est linéaire selon (4):

(4)

Quant au filtre d’ordre 3, pour l’obtenir il faut en superposer... trois ! Ceci revient à exé-
cuter trois lissages successifs du premier ordre, soit :

La projection par ce modèle est quadratique selon (5):

(5)

Une fois les conditions initiales obtenues (les valeurs au temps "0"), les coefficients bj de
l’extrapolation sont obtenus de façon adaptative en fonction des valeurs lissées yt : 

(6)

4.2.2 Les réponses aux fonctions d’impulsion

Les clefs du modèle étant données, la question est de connaître la réponse du modèle aux
données passées dans le filtre; en pratique c’est parler du comportement de la série y(t)
qui est le passage de xt dans le filtre. La Figure 29 en montre un exemple réaliste, celui de
23 mois de ventes d’un distributeur de voitures MERCÉDÈS. 

On y constate un phénomène inquiétant: recevant une série dont le signal fondamental
est quadratique, le filtre simple et le double ont des comportements peu vertueux: ils
accusent un retard et, l’un dans l’autre, comme disaient les petits amis Jacquot et Claudy,
ils s’en tirent assez mal. Ceci n’est pas seulement dû à la mauvaise tenue de route des voi-
tures MERCÉDÈS, mais bien aux dérapages des filtres de lissage lorsque ceux-ci ne sont
pas appliqués correctement. 
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. 

Figure 29. Réponse du lissage double à une fonction quadratique

Un peu de psychanalyse des systèmes par les transformées va aider à élucider ces
déviances. À cette fin, il faut suivre la tradition de la profession, qui est de soumettre au
filtre des inputs élémentaires, et considérer leur réponse; ensuite, il est possible d’effec-
tuer des compositions de ces signaux pour en déduire la réponse à des signaux d’ordre
plus élevé. Il s’agit donc d’interaction entre deux processus, dont l’input est "standard",
et de montrer le comportement temporel de l’ouput. 

Le grand auteur des méthodes généralisées de lissage exponentiel, R.G. BROWN, y avait
déjà pensé quand on était encore jeune (Smoothing, forecasting and prediction of discrete time
series, Prentice Hall 1963) et le résultat de cette analyse, très connue évidemment, figure
p.115 et sq. de cet ouvrage.

Figure 30. Les fonctions d’input standard

Double lissage sur 23 mois avec a = 0,1
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Le Tableau 4 donne les réponses à une impulsion respectivement des filtres des trois pre-
miers ordres, dits "simple", double" et "triple". Comme le filtre de premier ordre est la
constante a que multiplie une simple rétromettance, du type g(k) = b g(k-1), sa fonction de
transfert H(z) est déjà connue, a/(1-bz). Les autres étant le double, puis le triple, même
processus mis en série, il suffit de faire les produits des fonctions de transferts par elles-
mêmes. C’est ce que résume le Tableau 4, conforme au Tableau 10.1 de BROWN, op. cit.
p.146, où le paramètre b est écrit pour (1-a).

Le Tableau 5 donne à présent la réponse du lissage simple aux quatre inputs standard; il
réunit les résultats des tableaux 10.3 et 10.4 de BROWN (op. cit, Ch.10). Qu'apprend-t-on de
ces formules? Le modèle de base (2) est linéaire et les compositions d’ordre plus élevé,
donc (3) et (6), en sont des combinaisons linéaires; cette propriété s’applique donc aussi
aux transformées. La colonne centrale donne les réponses de ces filtres aux différentes
impulsions, fondées sur les transformées inverses rappelées au Tableau 4. 

Ceci donne les comportements transitoires, c’est-à-dire l’évolution temporelle de la série
d’ouput lorsque passe le temps t. Ces comportements sont à comparer à celui des inputs
respectifs présentés à la Figure 30 ; leur divergence éventuelle par rapport à cette évolu-
tion de référence est un critère d’inadéquation du modèle. 

Évidemment, un filtre de "lissage" ne doit pas nécessairement "coller" aux observations
(ce n’est pas un ajustement), mais ne doit pas avoir une allure méconnaissable par rapport
à celle de la source. Ceci se traduit au cours de la vision graphique des séries (x et y), et
mathématiquement par les écarts entre la fonction d’input (t, t² etc) et la formule de
réponse. Lorsque cet écart comprend un facteur bt, c’est-à-dire (1-a)t, celui-ci tend vers 0
pour t, puisque a<1. 

On obtient alors la situation en régime "final" (en anglais "steady state"), où le "reste",
figurant dans la troisième colonne, représente le biais, la divergence de comportement.

Tableau 4. Réponses des filtres linéaires à une impulsion unitaire

Ordre du filtre Fonction de transfert H(Z)
Réponse à une 

impulsion 

Simple

Double 

Triple

a
l b– Z
-------------- yt ab

t
=

a
2

l b– Z 2
---------------------- a

2
t l+ bt

a
3

l b– Z 3
---------------------- a

3 t l+  t 2+ 
2

------------------------------b
t
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Tableau 5. Les réponses des filtres aux inputs standard et leurs biais

Input Réponse transitoire
Biais en régime 
final "x-y"

Lissage d’ordre 1

(a) Impulsion 

(b) Marche 0

(c) Rampe

(d) Parabole

Lissage d’ordre 2

(e) Impulsion 0

(f) Marche 0

(g) Rampe

(h) Parabole

Lissage d’ordre 3

(i) Impulsion 0

(j) Marche 0

(k) Rampe

(l) Parabole

xt t = yt ab
t

=

xt l= yt l b
t l+

–=

xt t=
yt t

b
a
--- l b
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b
a
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2

= yt t
2 2bt

a
-------- b l b+ 

a
2

------------------- l b
t

– +–= 2bt
a

-------- b l b+ 

a
2

-------------------–

xt t = a
2

t l+ bt

xt l= l l t l+ a+ bt l+
–

xt t=
t

2b
a

------ 2
a
--- t+ 
  b

t l+
+–

2b
a

------

xt t
2

=
t
2 2b

a
------ t

l
a
---– 

 – t l b+  2
a
---+

b
t l+

a
----------–

4bt

a
-------- 2b

a
2

------–

xt t = a
3

t l+  t 2+ 
2

------------------------------------b
t

xt l=

BROWN écrit p.150 (op.cit.) : 

«I am indebted to Mr. G.J. CROOK for carrying through and
checking the tedious algebra needed to prepare these tables.»

Pour l’ordre 3, les Lecteurs et Lectrices sont donc invités à
s’adresser à ce bon Mr. CROOK pour en obtenir une version
personnalisée, dédicacée aux acquéreurs du présent ouvrage.

xt t= 3b
a

------

xt t
2

= 6bt
a

-------- 3b
a

------–
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Un exemple typique, et facile à interpréter, est celui de la "rampe", figurant sous (g) au
Tableau 5. Le deuxième ouput de lissage, yt

(²) dans le modèle, peut "suivre" le signal
croissant linéairement (la rampe), mais gardera en état final (la troisième colonne) un
écart constant de 2(1-a)/a – ce qui est l’"âge moyen" de ses valeurs.

Dès lors, le modèle de lissage double exprimé par 2yt
(2)- yt

(1) sera capable de suivre un tel
signal d’input; il ne pourra cependant pas traquer une parabole, ainsi que le montre la
ligne (h) du Tableau 5. 

Quand au lissage triple, qui peut suivre un retournement (un morphion parabolique), il
expédie nécessairement la projection selon une quadrique, donc une croissance ou un
écroulement rapidement déraisonnable. Il a cependant la vertu de décrire un mouvement
parabolique en s’y ajustant – il est d’ailleurs fabriqué pour cela – et cela doit plaire aux
"chartistes" de la bourse, où certains l’appellent le "TRIX", ce dont témoigne la référence
suivante, pire que naïve: «Un bon truc: Le TRIX». Dans Cash! du 11 mars 1999, p.18.

Et voilà. Merci BROWN, c’est très bien; vous pouvez vous retirer, nous allons délibérer. 

Il est d’ailleurs l’heure du baiser chinois.
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5 Les voies des processus

’il sort de son immobilisme, trois centres d’intérêt dominent l’investigateur des
mouvements, des changements, de l’"évolution". 

Il s’agit de la capacité de:

• Les appréhender, les exprimer : c’est la tâche de l’exposé «Les Modèles de processus»;
• Comprendre et mesurer les relations entre ces changements, puis les prédire : c’est le pré-

sent exposé sur les «Analyses de processus»;
• Influencer, contrôler les changements et maîtriser l’évolution: c’est une mission confiée

dans un quart d’heure aux «Processus sous consigne». 

Mais cette quête de la lucidité et du contrôle n’oriente pas les processus conduisant à la
liberté, et surtout à la liberté de la pensée. On n’en veut pour preuve que la variété d’atti-
tudes philosophiques avec lesquelles les processus doivent naviguer:

• «Tout est transitoire», selon les bouddhistes. Ils en sont néanmoins devenus les gens
les plus tranquilles du monde. Leurs réponses aux impulsions (comme une piqûre de
guêpe en pleine méditation) ne paraît pas faire sursauter leur nirvãnã; 

• «On ne se baigne jamais dans le même fleuve» selon Héraclite D’ÉPHÈSE; 

• La «Fatalité» des musulmans, le «Destin inexorable» et la «Prédestination» des Jansé-
nistes (Dont Blaise PASCAL et Jean RACINE, ce qui n’est pas si peu);

• Le «Déterminisme absolu» de certains positivistes, lequel s’oppose au «Tout est effet
du hasard» du bon vieux CARNEADES.

Dans les diverses versions spirituelles qui font des hommes de simples sujets de Dieu,
peu de place est laissée, par définition, au libre-arbitre et à la liberté individuelle. Si c’est
Lui qui impose toutes les règles, il reste la possibilité d’en parler, pas de les discuter. 

À l’opposé, la matérialité organique présente l’ensemble des processus comme un pro-
gramme héréditaire invariant, inscrit dans les associations génétiques; le processus de la
vie « l’ensemble des fonctions qui résistent à la mort» (selon Bichat, œuvres choisies, Flam-
marion 1984). De plus, la pensée elle-même serait engendrée via des phénomènes neuro-
naux qui peuvent être exprimés en des termes physico-chimiques, selon des échanges
d’énergie et de matière. 

Dans ces deux cas, cependant, quelque soit leur degré de déterminisme élucidé par la
science, elle-même a progressé en mettant en évidence des indéterminations qui sont
émergentes des processus, de par des perturbations et du nombre énorme d’interactions.
Les libertés organiques seraient alors issues de la diversité, des "césures" des processus
du matérialisme organique, lequel cesse lui aussi d’être inexorable autant que la prédesti-
nation. Les libertés de la vie ne seraient alors, comme dans les sociétés humaines, que des
déchets du désordre. 

Mais soudain, alors qu’on croit dominer ses processus, qu’on les a transformés, autopsiés
et placés en soins intensifs, on sera effaré de sentir le temps, dopé depuis sa naissance,
nous dépasser sans un regard en arrière.

S
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