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ANALYSES DE PROCESSUS

a mort est un bon point de départ.

Au lieu de vaciller sur ses bases, de patauger dans des conditions ini-

tiales que [’on ne connait pas, de remonter a ses origines douteuses, de
reconstituer son étre par des processus infiniment complexes enroulés dans des
molécules génétiques dont il faut des milliards d’essais pour trouver la combinaison
du coffre des ancétres, mieux vaut démarrer le processus de la vie avec cette simple
et tranquille certitude.

Apres la mort, tout devient possible, tout peut arriver. On ne sait pas. Donc, ce n’est
pas dans cette direction qu’il faut aller: c’est rétrospectivement, vers maintenant,
c’est-a-dire vers les processus qui lui ont donné naissance.

Le déces, comme le mariage, est avant tout un acte notarié, commis le plus souvent
avec préméditation. A la différence, parfois, que I’on peut se marier sur un coup de
téte, alors que [’on peut mourir d’un coup de queue. Mais c’est [’aboutissement
d’une suite d’actions et d 'une interaction de millions de processus faisant intervenir
des millions d’agents. C’est fou le nombre de processus qu’il faut mettre en oeuvre
pour arriver a en mourir, alors qu’ils sont contrecarrés par tant d’agents et de the-
rapeutiques de survie, dont les effets secondaires peuvent étre immortels.

Ce sont quelques processus, donc, mais dans leur version symbolique, ainsi que
leur analyse, qui sont l’objet de cet exposé.

On en sortira transformé, radieux, allégé par la baguette magique des transfor-
mées-z et de Laplace, on s’affranchira de [’espace temporel en passant dans
l’espace des fréquences, la, on ne sera plus qu’une transfiguration algébrique,
envoyant du ciel, ou montent en fusées d’artifice les processus divergents, de cha-
toyants graphes de flux de signaux.
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1.1.1

1.1.2

Processus temporels

Processus temporels

Processus

Définition

Un processus est défini comme «une interaction persistante dans le temps entre deux ou
plusieurs entités impliquant des échanges de matiere, énergie et/ou information, qui
conduisent a des changements de quantités ou de propriétés des entités impliquées». En
principe, les fonctenrs des processus purement temporels n’impliquent pas de conversions; ils
ne modifient donc pas de fagon significative les entités, de sorte que celles-ci ne changent
pas de nom.

Le cas particulier de processus qui occupe cet exposé est orzenté par l'indice temporel; si
l'orientation temporelle est unique il s'agit évidemment du cas le plus familier, celui du
processus séquentiel. Celui-ci est en général considéré "par défaut" (cC’est-a-dire quand il
n’est pas spécifié autrement); comme toute restriction, cela fait perdre de la généralité,
dans ce cas par 'oubli de propriétés comme Vznteraction,  anticipation ou la rétromettance avec
lesquelles un systémicien méritant doit en découdre.

Que l'on se rassure: on ira le faire, mais plus loin pour ne pas déranger les esprits moins
alertes.

Processus séquentiel

I’aspect temporel vient naturellement lorsqu’il y a des intervalles de temps séparant les
événements ou les valeurs exprimées. Le nombre de ces intervalles est donné par la diffé-
rence entre les indices; de la sorte, une variable "y" écrite y, . est décalée de k intervalles
de temps par rapport a y,; 'indice, décalé dans le sens positif, indique que y, est situé¢ k
périodes "apres" y,. Bien sur, y, i est vieux de k intervalles par rapport a y,.

La Figure 1 présente cet argument important de la description de processus: la significa-
tion du codage par les indices, lequel conditionne la modélisation. L’exposé sur «Les
Modeles de processus» le présente avec I'exemple du cycliste pour plaire aux Lecteurs les
plus mobiles; si on ne I’a pas sous la main, on peut se servir du bref rappel ci-dessous:

* Dans le cas de codage d’itération, il s’agit d’une répétition d’"essais" du modele faits
avec les valeurs successives de cet indice; cela s’applique aux exploitations des confi-
gurations dites "passives", via leurs "modules opérationnels".

e Dans le cas de codage séguentiel, les entités se présentent dans I'ordre de I'indice; ceci est
valable pour les flux et les transformations, telles qu’il en sera présenté a la section 3.
Quand lordre est pertinent, cela forme des chaines ("strings" en anglais, mais quand
C’est un (tres) petit vétement, on les dit aussi "coupe-crottes" en francais) d’inputs.

* Le codage femporel situe les entités aux reperes désignés par l'indice, et les flux trans-
terent du temps. Dans ce cas, a la fois 'ordre, les valeurs et la situation de ces valeurs
dans le temps sont significatifs pour Poutput.

F-5

12/12/12



F-6

©cpB

Analyses de processus

Les mode¢les temporels seront représentés plutot par des graphes de flux de signanx que par
des blocs algébriques; toutefois, les transformées "z" et "de Laplace" rendront possible
d’y exploiter I'algebre des opérateurs, et de résumer de la sorte des compositions tempo-

relles méme complexes. On en fera quelques faciles qui sont utilisées en gestion.

Ceci dit, il est génant de dessiner un processus réel séquentiel, étant donné la lecture clas-
sique de gauche a droite, en suivant progressivement "I’axe temporel" situé par conven-
tion en abcisses. Cet argument est aussi illustré par la Figure 1, qui montre trois facons de
coder et représenter une séquence de valeurs x codées par des indices temporels k se pré-
sentant a un foncteur A, et devenant des yy:

* La séquence réelle: les entités codées arrivent au foncteur (et en sortent, dans cet
exemple) dans cet ordre 1a; sur la figure, la valeur "a" de x sert 2 montrer que c’est la
premicre de la série; des "itérations" se feraient par exemple selon de telles séquences,
alors que les modeles dynamiques utilisent les deux suivantes;

» La séquence symboligne: c’est celle selon laquelle on "lit" les indices de la succession de
gauche a droite; elle est enrichie d’'un opérateur de décalage, qui engendre un délai
d’arrivée, montrant bien le sens contre-intuitif de la convention;

* La troisi¢cme série montre les indices utilisés lorsque le repere temporel t est situé
"maintenant”, c’est-a-dire t=0. A ce moment, y . est "vieux" de k périodes, ce qui est
clair et économique. Mais méfions-nous, c’est comme la mort: 'avant et Papres ne
sont pas symétriques. De toute fagon, comme disait 'autre (Sacha GUITRY?), «Les
rumeurs concernant ma mort sont fortement exagérées». N’empéche qu’elles auraient
fait dire a son ex-femme, Yvonne PRINTEMPS, dans cette riante perspective: «Enfin
raide!».

Figure 1. Expressions des indices de séquences

Parameétres ’
Générateur de x Récepteur de y
Foncteur
a) Séquence réelle:
xk)=..,d,¢c,b,a h y = .., hd, he, bb, ba
k=.,4321
b) Séquence symbolique avec décalage:
x(k)=a, b, ¢, d, e,... h=15, y=.,.,3,b,cd,..
k=1,2,3,4,..
¢) Séquences d’indices conventionnelles:
"Maintenant'" = t
t-k = .., t-4, -3, t-2, t-1 t t+1, t+2, t+3, t+4,...
"Maintenant" = 0
k=..,-4-3,-2-1 0 1, +2, 43, +4,...
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Notions temporelles figurant dans des processus

Les configurations sont qualifiées de statigues dans les conditions suivantes:

* Elles ne sont pas situées explicitement dans un domaine temporel. Ainsi, on ne dit pas
quand cela commence, ou finit, quelle est la succession des phases et combien d’unités
de temps prend le transfert;

¢ La succession des indices est pertinente, mais la séquence des codes n’est pas néces-
salrement conservée;

* Le role du femps n'y est pas explicite;
* On n'a pas parlé du temps nécessaire pour les transferts et les transformations;

e Il n'a pas été spécifié si des entités attendent, ou accumulent de l'information ou du
temps, ou encore anticipent;

 Elles sont qualifiées de passives parce qu’elles n’expriment pas une activité fournissant
des outputs enregistrés au cours du temps.

Cette passivité va ¢tre a présent ¢branlée, puis prise en mains, par les arguments suivants:

* Lorsqu’aux connexions sont associées des entités capables d'affecter la séquence tem-
porelle, on patlera de décalages et de délais,

* Lorsque sont associées a des transformateurs des propriétés d'accumuler de ['information
et du temps, on patlera de miémoire;

* La mémoire est rétrospective si elle accumule des données dont l'indice temporel est
négatif (par rapport a "maintenant");

* La mémoire est prospective si elle accumule des données dont l'indice temporel est posi-
tif (pat rapport a "maintenant"): c'est le cas de 'anticipation.

* Des inputs leurs seront soumis sous forme d’zzpulsions, ce qui va les activer un peu.

De telles propriétés et considérations sont développées dans les exposés sur la dynamique;
on n'aura besoin ici que d'une breve spécification d'un décalage et d'un délai de fagon a
pouvoir s’engager dans la rétromettance. De plus, les arrangements considérés ici ne sont pas
asservis; c'est a cette derniére considération qu'est associée la notion de consigne, qui sera
présentée dans Pexposé «Processus sous consigne».

Décalage

Un décalage (temporel) est une translation d'un sous-ensemble d'indices (temporels):

* Un décalage prospectif est régi par une translation positive des indices (ce qui leur
donne donc une valeur plus élevée);

e Un décalage rétrospectif est régi par une translation négative des indices (ce qui leur
donne donc une valeur plus faible, et recule la référence dans le temps). Le décalage
affecte 'ensemble des indices sans changer les références temporelles, donc le cycle
temporel du processus. Ainsi, si un coureur cycliste est disqualifié, tous ceux qui le
suivent avancent "d’un rang" et c’est pourquoi lorsque des prédécesseurs se petent la
gueule on a 'impression trés réaliste de progresser.
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L’écriture typique du décalage, est:
Yk = Xk
Un exemple en est donné par le Tableau 1 sur quelques valeurs numériques.

Le délai, en revanche, sera un accumulateur de temps, repris en 1.2.2. Dans le cas des
cyclistes, par exemple, si un passage a niveau se présente dans une course, toute une
théorie de pédales vont s’agglutiner les unes dans les autres, et les retardataires sont bien
contents de les attraper par derricre.

Tableau 1. Décalage de valeurs numériques

Temps k X 2 Xp Xy
4 17 - -
5 19 17 -
6 13 19 17
7 15 13 19
8 15 13
15...

La Figure 2 représente une succession de valeurs x, et leur projection selon "x, ;". Clest
une extrapolation "naive" de x qui consiste a prédire "pas de changement", donc conset-
ver la derniere valeur observée. Ce mode est fondé sur une hypothese de stationnarité du
premier ordre, c’est-a-dire, en 'absence d’information "innovante" et crédible, la stabilité
de la moyenne et une espérance mathématique nulle des variations potentielles (aléa-
toires, imprévisibles) autour de cette moyenne. Un usage plus noble est de T'utiliser
comme référence pour la confrontation des performances de différents modéles d’extra-
polation.

Figure 2. La projection dite ""naive", ou "pas de changement"

Prévison: x

R
*: Donnée: x4 o *\z/ \ *?
: /*\’ / g S S

Koy

1 1 1 1 1 1 1 1 - k
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Un peu plus intéressante a présent est la formulation:

D X = prxXier + podic + prug
Dans (1):
* x est la variable endogene, donc résultante de sa propre dynamique et des influences;

* d est une variable de décision;

* u est une variable exogéne. Ses valeurs sont arbitraires, ou mieux, décrivent des événe-
ments ou des comportements dont — pour le modele considéré — le gestionnaire n’a
pas la maitrise;

* Onyaajouté des petits parametres p; pour faire plus vrai et plus joli.

Une relation entre des variables de management qui illustre classiquement (1) est celle de
la différence de stocks, selon les notations suivantes:

* Syt le niveau de stock au moment k;
¢ Py:le nombre d’unité entrée en stock (produites ou acquises) entre k-1 et k;

* Vi le nombre d’unité sorties du stock (livrées ou jetées) entre k-1 et k.

La séquence temporelle (2) et les suivantes sont alors trivialement vraies:
(2) Sk+1 = Sk +Pk - Vk7 soit:

S1=Py-(V1-S9)

S, =81 +Py-V, =P +P,y-(V; +V,-5)

S3=P +P,+P;-(Vi+V,-+V,-§)

Soit, en écriture matricielle:

s
S P
1 1 00..0 I v+1v OS
3) Sol |1 1 0.0 [Pyl | 12770
S 111 1| |p T B
T T _Zk=1vk S0

La structure qui s’en dessine est:

4 s=Dp-av+s

Dans (4), s est le vecteur d’état, D est la "Driving matrix", laquelle a le role d’opérateur de
transition dans le temps et s le vecteur des conditions initiales. Quand on deviendra
adulte — dans les exposés sur «LL.a Dynamique» — Iécriture se généralisera vers:

B vy =Cx +du (+y)

Dans la version classique (5), y est le vecteur endogene, éventuellement garni de ses
conditions initiales, x est décisionnel (c’est le "p" de (4)) et u est 'impulsion exogene (le
v comme "ventes" dans (4)). Cela ne fait pas beaucoup rire les Lectrices, mais il y a pout-
tant beaucoup de modeles qui s’amusent avec.
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1.2.2

1.2.3

1.3

1.31

Délai

Soit une suite d'inputs codés par un indice temporel: X, X1, - » X4}, Une entité qui
stocke une suite ininterrompue d'indices temporels décalés est un dé/ai. 11 n'est pas indis-
pensable de spécifier pour l'instant si la suite est discrete ou continue. Cela signifie que
dans les formalisations une suite partielle d'inputs est congelée, "immobilisée" dans un
stock, lequel va donc contenir les inputs ayant ces indices temporels, et le taux de renou-
vellement des entités dans le stock dépend de la suite présente dans le délai.

Le flux décongelé transféré par le délai doit avoir le méme ordre d'indices que le flux qui'y
entre. A Pencontre du cas du décalage, la présence d'un ou plusieurs délais peut affecter le
cycle temporel de I'ensemble de la configuration. Un délai est donc spécifié par un inter-
valle de temps, sa longuenr, qui est la somme des décalages des indices. L’ordre du délai est
plus complexe car il fait intervenir a la fois le nombre et la spécification fonctionnelle des
délais.

Le délai sera repris dans I'exposé sur «La Dynamique de systemes en gestion», ou il
deviendra formellement un zn#égrateur puisqu’il contient un accumulateur de flux.

Itération

Une #ération est une séquence de transformations identiques appliquée a une suite
d'inputs de méme nom codés par un indice temporel présentant un décalage rétrospectif.
Une itération peut étre répétée n fois: n est alors l'ordre de l'itération. En pratique, n ité-
rations "refont la méme chose" sur les inputs successifs de mwéme nom; il n'est pas dit évi-
demment que ces inputs successifs sont identiques, sinon l'itération est oiseuse. Si, et
seulement si, la configuration comprend une entité qui stocke la séquence d'outputs avec
le méme décalage temporel, les itérations jouent le role d'un délaz, dont l'intervalle de
temps est la somme des cycles temporels des itérations. Ceci n’est pas abstrait: les pro-
cessus réels qui travaillent "par lots" procedent a des itérations avec stockage des €élé-
ments jusqu’au transfert du lot ainsi constitué.

Opérateurs temporels

Définition

Soit un générateur qui fournit des valeurs a un foncteur h. Dans les processus temporels,
les interactions se manifestent par leurs associations et leurs dispersions, lesquelles sont
situées dans des "noeuds" sur les graphes de flux qui vont refaire surface dans un instant.

Ce terme de "noeud", et d’ailleurs les "graphes de flux de signaux", est issu des schémas
électriques et électroniques, comme étant le point ou s’expriment les "bilans" des cou-
rants, dont un exemple un peu trop léger figure dans I'exposé sur «La Systémographie».
Lorsqu’un noeud est capable de modifier les flux ou les valeurs qui lui sont soumises, il
fait une opération, et le foncteur de cet exploit est un opérateur.
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Les opérateurs arithmétiques sont si fréquents et si connus que des signes spéciaux leur
sont dédicacés, mais leur origine n’est pas incontestée. Ainsi, une version de l'origine du
signe "-" le situe au treizieme siecle, aux dépots commerciaux de la place de Londres. Un
trait horizontal sur ballot y indiquait que le poids requis n’était pas atteint — donc qu’il en
"manque"; lorsque le lot est complété, on barre le signe "-", ce qui fait apparaitre un
"plus". Pour vérifier cela, il faudrait demander a un Collegue encore plus agé s’il aurait été
témoin de cette pratique; sinon, il faudra faire comme avec tout ce qu'on ne sait pas:
Pattribuer aux Sumériens si c’est malin, ou a Bernard Shaw si c’est comique.

Cecti dit, la lecture de I'application d’un opérateur a un argument est celle d’un produit,
par exemple "hx". Il faut rappeler aux grands naifs que ce n’est vrai que dans le cas parti-
culier ou cet opérateur désigne le produit; il est alors situé entre deux données, et ne
s’écrit qu’en cas de petit besoin urgent. Dans les autres cas, il désigne un machin, souvent
représenté par le signe générique "*", qui fait des tas de choses, méme des tripotages
espicgles, aux arguments qui lui sont innocemment livrés.

Opérateur de décalage

Soit un modéle linéaire donnant I’évolution temporelle de y en fonction de sa valeur
antérieure et du signal d’input u,. Dans ce cas, le foncteur f(y;.;) n’est qu’un coefficient
scalaire, disons ay, et la formulation est:

(6) ¥ = a1yeq Thou

Dans (6), Poutput "y" a un comportement formé par une partie /bre (la variation propre
de y) et une partie nfluencée (par u). Plus généralement, y peut étre engendré par
I'ensemble additif de ses n valeurs antérieures et étre percuté par byu,, ce qui s’écrit:

(7)) ye=agye1 tagyen + ot agye, thouy

Le processus temporel de y est décrit par un modele dit auto-régressif sous influence (de u)
ce qui forme (en (7)) une équation aux différences du n® ordre; c’est joli mais cela com-
mence a donner des inquiétudes au type chargé de la résoudre au lieu de Iécrire. De plus,
si la présentation est en continu (c’est la différentielle Oy qui est ici échantillonnée par "y,-
Ver'), cela conduit a des équations différentielles a faire peur méme aux candidats en
science de gestion.

L’idée du gestionnaire de processus est de saisir (7) et de ’écrire comme dans I'expression
(8). On y voit que byu, est une nouveauté a ajouter a la combinaison des valeurs anté-
rieures pour former la valeur la plus récente y,:

(8) Y- 21Ye1 - Y2 - - - 3V = Douy

Ensuite, il délégue le pouvoir a des gpératenrs. A cette fin, on nomme d’abord un opéra-
teur de décalage ("lag" en anglais) tel que:

_ 1.
OV = Vi1 et: OV = Verd

L’ordre du décalage est 'exposant de 'opérateur 4, et le modele est polynomial en cet opé-
rateur &, selon (9):

@) DDy, =y
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1.3.3

Dans (9), Popérateur & devient 'argument de la fonction @(.):
(10) D) = 1+a,6ta,F+... +a,8"

Cette forme (10) est généralisée par les modcles auto-régressifs sous influence. L’input
global sur y devient une séquence pondérée des inputs u, décalés, selon (11):

(1) ye-21¥e1 - Y2 - - - ApVen = Dote 4 byugg + bougy + .t by que 49

Une deuxieme fonction, P(.), ayant l'opérateur pour argument, est engagée pour u, de
sorte que la synthese est (12):

(12) @)y, = ¥(9) u,

En effet, ce n’est pas seulement la derniere impulsion qui projette le comportement, mais
les stimuli antérieurs (ici les u,_y, pondérés par des coefficients by) laissent également des
traces. C’est comme les pulsations honteuses de 'enfance, c’est-a-dire des u, telles qu’en
avait encore Sigmund FREUD a t=70 ans.

La correspondance discréte-continue de expression simple auto-régressive, sous impul-
sion ponctuelle u, se fait en constatant les équivalences suivantes. Soit "t" le temps initial
et y( la condition initiale. "Tout-a-I’heure” c’est t+1, et 'Angélus de dimanche midi c’est
t+k+1. De la sorte, la relation temporelles’écrit:

(13)  Verkr1) = b Yerry T bugg

Entre (12) et (13), opérateur 0 joue le role de la translation temporelle d’une unité; elle
est équivalente a la relation générique continue:

(14) dy = by + bu

La Figure 3 aide a montrer cette transformation du probléeme auto-régressif simple, qui
sera généralisé dans le Tome Nord par 'exposé sur «LLa Dynamique sous influence».

Figure 3. Foncteur et opérateur de décalage

bou(t)
u() be 0 @ y(®

»
>
fnd Foncteur .
Générateur o Récepteur

Opérateur de différence

Le cousin utérin de I'opérateur de décalage est celui de la différence premiére, laquelle au pre-
mier degré s’écrit:

Ay =y, -y.1 =(1- 9y,
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Il peut étendre sa capacité de concentrer le temporel par expression algébrique suivante:
gebriq

Ay = (V- V1) - Oe1Ve2) = O - 60 -(8y- 0%y =y, - 28y, + &%y, = (1-8)y,

Si on n’est pas trop pres d’une grande chandelle de prof qui n’éclaire pas loin, on voit dis-
tinctement qu’on peut continuer comme cela jusqu’a ce qu’un cancre nerveux lui casse
deux dents de lait. ’important, c’est que le débat passe du domaine Zezzpore/ au domaine
algébrigne, ce qui se fera notamment par les transformées.

Opérateurs de la forme canonique discrete

Souvent, en tricotant au coin du feu, elles parlent de I'age "canonique". C’est la borne
inférieure des reperes temporels qui autorisent a accéder a la somptueuse promotion en
tant que "bonne du curé", et que la régle fixe a quarante ans. Toutefois, les curés ont ten-
dance a se faire rares — pour ne pas dire a se faire désirer. LLa question angoissante est
donc a présent: quel est I’age requis pour étre autorisé a étre le curé d’une bonne?

Bonne
Chetche Cutr é
3 jours / semaine

Références exigées

C’est ce qui arrive au modele auto-régressif discret. Il peut lui aussi étre conduit a une
forme canonique en variable d’état x par les transformations dites "des phases", écrites
ci-dessous avec la légereté des scalaires. La colonne de droite montre les mémes défini-
tions, mais décalées d’un pas temporel vers 'avant, et ’élimination de y, en fonction de x,
arrange tout le monde comme dans le cas continu.

X1 ~ Y(en+1) X1(t+1) — X2
X210 T Y(tn+2) Xo(e+1) = X3(p)
Xn-1( = V(1)
%n T Yo Yo Xn(e+1) = Y(e+1) T Yet)
~ Y@ " T Y (tnt1)
= -a1Xq(y + .. “AnXn() + U
Le correspondant de la forme canonique en phases est appelé "nested" programming. La

version matricielle (dite "direct programming") est (15)-(16), ou les indices montrés sont
sont 1, 2, n pour simplifier la lecture:

M| ey ey a0 [

(1) S| |10 o |20 (0] Y
x 0 1 0]|x 0
n(k + 1) n(k)

F-13
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1.3.5

!
(16) Y = [P b2 B2 * Pt

X
n

Lécriture conventionnelle d’un tel systeme (15)-(16) est dite canonigue lorsqu’il est bien
admis que:

* Le modele est linéaire;
¢ Les coefficients sont constants;

e L’impulsion (uy) est un vecteur en k.

L’extension a plusieurs inputs et outputs se fait en empilant les vecteurs respectifs et
adaptant les dimensions matricielles des opératenrs en conséquence de cette extension de
Iespace de référence; (donc d est un vecteur et B devient une matrice). Ceci autorise une
meéme écriture synthétique pour un processus temporel plus général, exprimé en discret
par (17)-(18), et représenté par la Figure 4.

(17) x4 =Ax+ Bug

Et voila que x se dépose sur une #rajectoire par un opérateur A, qui, sous ce régime linéaire
qui rend le mod¢le trés mince, est une matrice de fransition.

Figure 4. Inputs, états internes et outputs

Yo 1)

d v
. y2(0)
X
n
p(®
Générateny  Vecteur  Vecteur firnrs o Vecteur p
énérateu Finputs  de gain ats 1nternes d’outputs Récepteur

Exemple numérique

Ve~ -2¥e1 T0,5y2-02y.3+0,5u.q-04u.,+0,7u 3

Les vecteurs sont:  a;= 2 by= 0,5
Ay— -0,5 blz -0,4
a3— 0,2 b2: 0,7

La formulation (17)-(18) devient numériquement la suivante, comme il est écrit dans les
"textbooks" depuis que tout le monde recopie la méme chose.
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e+ [ 05 02| 1G] i
2+ |10 0| F 200 (0] M)
. 0 1 0], 0
3(k+1) | 3(k))
*1(k)
Yo = 0.5 0,4 0.7] S0 T %)
3(k))

Une petite convolution

La convolution est une formulation mathématique qui joue un role important dans beau-
coup de domaines impliquant directement ou indirectement des réponses a des impul-
sions et des sommes de variables indicées. C’est ainsi qu’on la retrouve en statistique
(pour les fonctions de répartition de sommes de variables aléatoires), dans les fonctions
génératrices, dans les traitements de signaux digitaux ainsi que dans la projection de
séries chronologiques relevant du domaine des filtres linéaires.

Peu développé chez les gestionnaires primitifs, avant les cours de systémique, "I’esprit de
convolution" est une pourtant belle mentalité pour celui ou celle qui est en charge d’une
dynamique de processus.

11 suffira ici de la faire apparaitre dans le cas le plus simple, a savoir celui d’un systéme
linéaire discret dont 'output y est construit par une variété linéaire de ses propres valenrs
antérieures (yy) et des zpulsions vy en remontant dans le temps (par k-n). On fera ’hypo-
theése que 'output yy est nul avant le moment k=0.

Vi = bgu, +byu g+ Fbyu -2y - Yo - - 2 Ve

Dans le cas particulier ou y et u sont scalaires (donc un seul output et input), Popérateur
b est alors aussi scalaire et forme une séguence de pondeérations:

_ k-1 _
yk = Z] — Obk_}u] etyO — bO Ug

Soit que le processus envoie une impulsion unitaire, c’est-a-dire:
uy=1 (en k=0),
La réponse de y "maintenant” est simplement:
Wy Yo — by;  ug=bhy
Pour engendrer ses autres réponses, y combine sa propre série de valeurs "jusque 1a" avec

la série des impulsions et cela en ¢rvisant les indices du temps puisqu’il faut construire
chaque futur de 'un par le passé de lautre : c’est ce que fait la convolution.

F-15
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La séquence engendrée, ol w va bientot vouloir dire quelque chose, est:
Wy y1 = byug-ayy =bjug-ab

Intéressant? On va plus loin?
W) y2 = baug-ajy -a3yp = by-ajby +a?by - axby

Comme on dit dans les ouvrages supérieurs (a celui-ci), «nous laissons au lecteur le soin
de»... continuer a faire des y, — disons, pour étre raisonnable, jusque ys- gr3. La séquence
Wi ainsi obtenue s’appelle séquence de pondération, car ses valeurs seront combinées avec
les valeurs antérieures de Poutput pour former le nouvel output au temps k par (19):

k
(19) Y T Z _ Ow(k—j) U pour k=1, 2, ...

On voit bien dans (19) le role de toutes les valeurs antérieures (depuis le 0). Ceci forma-
lise 'argument selon lequel les conséquents (les y) ne sont pas ponctuels mais ont une
"mémoire" des impulsions antérieures (u) et des réponses (y) qui y sont associées.

Une petite transformation d’indice facilite la lecture temporelle:

soit : t = k-j,
de sorte que : t = k quand j=0,
et: t = 0 quand j=k,

ou k est maintenant, tandis que j est Lancienneté, comme le montre le Tableau 2.

Tableau 2. Les indices de la convolution

j 0 1 2 k

t=kj |k k-1 k-2 0

Donc si on est en k=5, quand est-ce que "t=3"? La réponse est "il y a deux périodes".
Pour le cas de t=4, ce serait "il y a une période". Cela a donc bien commencé en t=0. On
est dés lors dans le bon sens pour écrire (19) comme devenant (20):

k
(20) Yk T Zt: oVt Yk—t

Par temps clair, lors des nuits sans lune, on peut voir cela graphiquement a la Figure 5. La
séquence de pondération wy est, dans cet exemple, exponentiellement décroissante: le
but est de s’échauffer déja en vue du Zssage exponentiel, un modele pratique présenté dans
une section ultérieure et qui a cette formulation. ILa séquence des impulsions (uy) est tres
quelconque.

Pour obtenir (c) a partir de (b), sur la Figure 5, il suffit de lui dire de la retourner, la regar-
der dans un miroir, puis de faire une translation de k unités de temps. Vu la souplesse
nécessaire, on comprend alors pourquoi la convolution n’est pas plus répandue dans les
séquences d’un certain age. L’output y (montré en (e) mais ici non calibré graphique-
ment) est bien str obtenu par la sommation des composantes correspondantes.
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Processus de traitement de signaux

Figure 5. Composition de la somme de convolution

YOLR w)

2
@  "Poids" Y@ w0 w(3)
L1 1™ e ey -
0 1 2 3 4 5 6 7 t
®)  "Données" Ue up u Us
u
) u1| 3| Ug | uy
©  ue (pourk=3) 0 1 2 3 4 5 6 7 =
u
0 0
| | | |
4 3 2 1 0 1 2 3 =
w(0)us w(0)us
(d)  (Pour k=3) W)Uy o \1(2)21 ________ + w2u
o vl + w(l)u,
w(3)u + wB)ug
= Vk

Bien que de nombreuses publications présentent cette maticre trés courante, il serait poli
de remercier CADZOW et MARTENS (Discrete Time and Computer control Systems, Prentice-
Hall, 1970, pp. 39 et environs) d’avoir déja eu a I’époque le mérite d’écrire quelque chose
de compréhensible et de bonne référence pour longtemps. Leurs notations ont été ici
adaptées, et quelques mises au point de forme y ont cependant été apportées aux fins de
cohérence. Ils vont aussi aider a établir les correspondances via le traitement de sighaux.

Processus de traitement de signaux

Correspondance discréte-continue

Soit une affection affectueuse, un état pathologique continu. Mais si cette pathologie un
peu chronique était le hoquet? Ce cas est-il une manifestation discréte d’une affection
continue, ou bien considere-t-on que le phénomene de hoquets répétitifs est une affec-
tion continue, mais échantillonnée?

De méme, un processus continu de valeurs peut étre échantillonné au moyen d™un ruptenr,
qui en capte la valeur a des instants successifs. Il peut alors conserver des niveaux de
valeurs discrétes pendant des intervalles de temps, ce qui rend le signal résultant continu
par morceaux constants — ce que montrera la section 2.3.

F-17
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2.2

2.3

2.3.1

Correspondances entre les signaux

L’échantillonnage par séquence d’impulsions est utilisé par convenance mathématique.
Parmi les systemes "réels" dont ceci est le modéle, on trouve essentiellement les processus
d’échantillonnage des calculateurs et controleurs digitaux, ou le traitement de signaux
concerne principalement la conversion. En effet, la commande de processus étant confiée a
des ordinateurs, il faut que tous les signaux puissent étre traités sous la forme discrete et
digitale; une séquence typique peut étre représentée par la Figure 6 (avec I'aide de
CADZOW et MARTENS, 7bid.), ou les boites contiennent des processus de conversion.

Figure 6. Séquence de conversions de signaux en vue du contréle digital

Echantillonneut Convertisseut Oxedlianais Convertisseur Circuit
("Sampler") | Ana/Dig . remnatedr Dig/Ana =1 "hold" %
ontinu Discret Discret Discret Discret Continu
Analogique Analogique Digital Digital Analogique Analogique

L"échantillonneur” ("samplet" en anglais) transforme le signal continu en un signal dis-
cret qui consiste en une séquence de valeurs échantillonnées prélevées sur le signal
continu original (en général a des intervalles constants). Le signal continu original et le
signal échantillonné ont en commun le fait d’étre analogigues:

* La propriété d’étre analogique, qui peut étre associée a un signal continu ou discret,
implique qu’il n’y a aucune restriction sur amplitude du signal dans une etendue
donnée;

* Un signal digital a une amplitude restreinte a un ensemble borné de valeurs.

Echantillonnage de signal continu

Attouchements et pulsations

Par son origine, le mot "digital" implique que I'on travaille avec les doigts. Une calcula-
trice "digitale" a donc nécessairement besoin de temps pour effectuer toute opération qui
8 q
lui est soumise par un programme. Ainsi, si on lui soumet un signal continu Q(t), elle doit
le palper avec précision puis, avec doigté, elle doit en circoncire des petits morceaux,
donc prélever des "bribes d’information”. Ces attouchements subtils s’effectuent a I'aide
d’un "rupteur", qui capte "'amplitude du signal a des instants particuliers, supposés ici de
période constante, comme on le voit sur la Figure 7.

Un peu plus tard, il pourra conserver information de cette amplitude, pour donner a son
client des pulsations qui subiront le traitement adéquat.
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Processus de traitement de signaux

Figure 7. Echantillonnage par attouchements

A

5 i
Signal
¢ (1)
A Indicateurs de temps
1
;T 0 T ZTJ 3T 4TK 5T .. naT ”t">

11 s’agit donc d’une modulation de 'amplitude @(t) d’un train d’impulsions par le signal a
g . . . . p . p . p . g
échantillonner aux instants périodiques 0, T, 2T, 3T, ... La Figure 7 aide aussi 2 com-

P q g
prendre la notion de "retard" du signal. En effet, au point |, par exemple, on peut estimer
que le signal, lancé a I'instant 0, est en "retard" de 2T, si 'on prend 0 comme référence et
J comme centre de diagnostic.

Une autre maniere de procéder consisterait a permuter les instants de référence et de
définir ainsi que par exemple en K le signal est en "avance" de nT. C’est pourquoi sur la
Figure 7 on a présenté sur ’axe des abcisses un Indicateur I(t), et non une "variable" tem-
porelle. Il n’indique donc pas nécessairement que K est apres J. St le temps passe de
gauche a droite, quand 'impulsion arrive en K| celle de ] est déja passée de 4 intervalles
de temps! Donc @(t-3) n’est pas en retard, mais bien ez avance de 3 intervalles par rapport

aQ);

Echantillonnage non-instantané a période constante

Dans le cas précédent, la caractéristique d’impulsion "instantanée" est physiquement uto-
pique. Elle doit étre adaptée en admettant que I’échantillon n’est plus une impulsion prise
a I'instant n'T, mais bien un signal de durée h non nulle qui se présente a I'instant nT. Ce
signal, représenté a la Figure 8, introduit déja I'important #rait morse de la section 3.

Figure 8. Signaux de durée h aux instants nT

Signal

@ Indicateurs de temps
10

-T 0 T 2T 3T .. nT
h
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2.3.3  Obtention de la fonction d’impulsion de Dirac

a Mathématiquement

(1) = 10570 e [ (0t = 1
0si t#0 -0

b Pratiquement

Soit que I'on reste coincé dans I'espace-temps positif, ou t = 0. La définition précédente
permet de constater aisément quun choix judicieux des unités suffit pour que I'on puisse
considérer cette fonction comme une fonction "percussion unité" telle que la montre la
Figure 9, ou a la surface unitaire considérée on fait correspondre 'ordonnée 1.

Figure 9. Options d’impulsions

Signal
()
J-Zl ou bien: 1/¢

En conséquence, on définit un #rain dimpulsions d1(t) de Dirac comme une succession de
telles fonctions subissant un refard constant de période T, ce que représente la Figure 10.

Figure 10. Train d’impulsions de Dirac

1 5(t)

y

1 d(T) Retard d’une période

y

1 3(t-2T) Retard de 2 périodes

\J

1 d(tnT) Retard de n périodes
|

1 Reperes temporels

T |0 T 2T 3T .. .. T >
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Les transformées F-21

La Figure 10 montre la constitution du train:

Or(t) = 8(t) +3(t-T) +8(t-2T) + ... d(t-nT) + ...

o0

Sr(t) = % 08(t—nT)

n=

Afin d’obtenir une fonction @(t) ayant I'allure de celle de la Figure 8, il ne reste plus qu’a
"modulet", c’est-a-dire a appliquer a cette fonction &p(t) un opérateur de "saut" qui agit
aux mémes instants, donc de méme période. Ce processus est réalisé par la mise en paral-
lele de Op(t) et d’'une fonction mathématique f(t) fournissant les coefficients de propot-
tionnalité a chaque instant, soit £(0), £f(T), £f(2T), £(37T), ... f(nT) , ..., selon la Figure 11.

Figure 11. Convolution des signaux

Signal f(t) A -
(0 £+ 1)1]
“ T r i I T( ) Reperes
P  temporels
-0 T 2T 3T .. .. ol (a+DT
¢(t-2T) OENT) ot 1)1
PO g @D O(t-3T)
J 810
P rrr vy Reperes
T 0 T 2T 3T .. nT <n+1)T | tCmporels

La lecture de la Figure 11 est immédiate:

@) = £0).5(t) +H£(1T).(t-T) +£2T).8(t-2T) + ... +£(nT).8(t-nT) + ...

ey e =Y Of(nT)-S(t—nT)

n=

Et on est enchanté de retrouver la somme de convolution telle qu’a la Figure 5.

Les transformées

Une jouissance fréquente et complexe

Les matins calmes on peut entendre sonner un courageux réveil (il risque sa téte a
claques) a dring-dring avec modulations s’il est cher, pendant disons deux minutes. Mais
si, au lieu de lui péter la gueule, on retourne loreiller et passe dans I'espace des fré-

12/12/12
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quences, on ressent avec ravissement une vibrante a 426 Herz, ce qui est proche de la
note "la" sur un piano Steinway. Le temps de trouver les racines propres de ce machin,
pour revenir dans I'espace temporel, 'autobus du boulot disparait a ’horizon.

Les travestis connaissent d’ailleurs bien les transformées de Laplace pour sortir de
I'espace du temps et entrer dans celui des fréguences. Ce qui est marrant, c’est que les gens
croient que lorsqu’on le fait dans ’espace des fréquences ¢a va plus vite, ou qu’on le fait
plus souvent. Or, en réalité, ce n’est qu’une jouissance plus complexe, vu qu’on 'obtient
par une intégrale de ™" Le gag c’est que les états x; résultants sont alors souvent
variables et complexes aussi, et qu’il faut faire ensuite la transformée inverse (ce qui peut
demander une certaine souplesse) pour reprendre ses esprits dans 'espace temporel.

Les transformées de FOURIER sont un peu cela, mais elles ont commencé plus modeste-
ment, par les petits jeux de dés des tripots fréquentés par DE MOIVRE. Déja en 1730,
dans une éjaculation précoce, ce somptueux mathématicien a cherché — et trouvé! — le
moyen d’exprimer les probabilités associées aux sommes des valeurs obtenues en langant n
dés réguliers "généralisés" a k faces numérotées de 1 a k. Dans cette version initiale il
s’agit donc d’engendrer les masses de probabilité de sommes de variables aléatoires a valeurs
entieres: ce seront les premieres fonctions génératrices de probabilité.

Plus généralement, les transformées de LAPLACE (1812), puis celles de FOURIER (la
semaine suivante), plutot construites a d’autres fins, permettent d’engendrer de fagcon uzi-
vogue toutes les fonctions de densité de probabilité et leurs moments. Les "fonctions
génératrices" peuvent donc étre considérées comme une application spécifique (et tres
jolie) des transformées de LAPLACE et FOURIER; leur version discrete est la transformée-
'27", a laquelle la fonction génératrice des probabilités est formellement équivalente.

Le fait que leurs domaines d’exploitation sont variés est dd au service tres général qu’elles
rendent sur les interactions entre des séries de valeurs de variables ou de fonctions
temporelles; une contribution déterminante en est la transformation de formulations
temporelles (linéaires) en formulations algébriques.

La multiplicité des domaines ou de tels problemes se présentent font alors que leur
exposé peut ¢tre entrepris selon différentes approches, mais leur formulation mathéma-
tique directe, sans avoir besoin d’un contexte spécifique, est auto-suffisante.

Cette variété de domaines d’exploitation a éveillé la cupidité des systémiciens vers cette
arme si puissante, eux qui ont tendance a se méler un peu de tout... C’est méme devenu
quasi par définition le domaine privilégié de la théorie des systemes et de la systémique
appliquée; Pexpression et le traitement des processus dynamiques par des modéles sym-
boliques est en effet le blason de la noble systémique — les autres disciplines qui en héritent
n’en étant que des batards.

Il y 2 de nombreuses sources chaudes qui exhalent des vapeurs de transformées. Parmi
les plus saines, qui ont fait du bien au présent exposé, on conseillera E.L. Jury: Theory and
application of the 3-transform method, Wiley, 1964 pour Poption discréte et pour 'option
continue, le cours de Mathématiques appliguées 11, les transformations intégrales, par F. X. LITT,
AEES-Liege, ULg 1981 (Offert gracieusement par ce sympathique Cher Collegue, ce qui est
remarquable dans le milieu).
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Les transformées

Transformée de Laplace (unilatérale)

I’étude de 'incidence d’un signal donné sur un processus physique continn peut étre faci-
litée par le travail dans un domaine artificiel auquel on accede par un changement de
variable appelé transformée de LLAPLACE. Dans 'espace-temps positif (t20), ce qui la
rend "unilatérale", celle-ci est définie par:

00

M) LA = F(s) = [ oA

Cette expression appelle quelques remarques hatives pour se mettre a I’abri de critiques
sur son utilisation aveugle:

* La variable s est définie dans le plan complexe, soit s=6+jm; c'est donc dans ce
domaine-la que se font les discours sur la convergence, et pas ici sur terre.

* Elle n’est pas valide pour des fonctions temporelles f{t) dont ’évolution est plus
rapide que I'exponentielle, donc pour f{t)>Me®', ou pour des fonctions trop bizarres
issues des fantasmes des matheux.

* Elle connait une version bilatérale (de -00 a +00) mais seule la définition la plus simple,
(1) ci-dessus, sera utilisée et ce, aux fins d’introduire avec naturel la transformée-z,
laquelle concerne les séries discretes.

Propriétés

Quelques-unes de ses propriétés, citées ici mais que 'on peut démontrer quasi directe-
ment a partir de la définition, donnent un certain feeling de ce qu’elle peut faire, et sur-
tout aideront a effectuer une correspondance avec la transformée-z. Bien que n’étant
qu’un produit dérivé, c’est cette derniere qui sera plus explicitée ici en raison des services
rendus a des processus que 'on décrit quand on croit faire de la science de gestion.

a Transformées des fonctions "échelon" et "rampe"

La fonction "échelon unitaire" est omniprésente en étude des processus temporels. Elle
est définie mathématiquement par (2) ci-dessous et graphiquement par la Figure 12.

®) u(t) = { 0,pour t=0 r(t) = { 0,pour t=0
I, pour t>0 t,pour t>0

Figure 12. Fonctions "échelon unitaire'" et '"rampe"

Fonction "rampe"
r (t): u<t) ~ - .
- Fonction
——= "échelon unitaire"
-~
-~
o -t Temps
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La formule de I™escaliet" est x| = X 1,, OU a est une constante enticre.

En intégrant par parties successives depuis la définition, on a:

00 _ (e 0] _ . | 00 _
L") = Fs) = [ "¢ dt= I—lj et = I—l-J' e *dt
0 S Yo " Yo
On obtient les cas particuliers pour n=0 (donc £ pour I’échelon u(t)) et n=1 (donc !

pour la rampe r(t)):
Llu®)]=1/s et Lr()] =1/s?
b Translation vers la droite
La translation vers la droite est la procédure correspondant a I'expression d’une fonction

temporelle en relation avec des valeurs antérieures, ce qui est le fondement des processus
auto-régressifs et de Pextrapolation en économétrie. La formulation directe est donc:

g = flt-a),

ou a est le décalage, ce qui est représenté par la Figure 13.

Figure 13. Translation d’un fonction temporelle

11,80 O

ot Temps

Toutefois, comme on a convenu de ne considérer que le temps positif, f(t)=0, il faut
constituer g(t) en multipliant f{t) par I’échelon unitaire u(t) décalé, soit:

8 = flt-a)u(t-a),
Effectuant la transformée, on obtient:
3)  G(s) = L[(tayu(t-a)] = e™F(s)

Ce résultat (3) donne donc une interprétation de €' comme opératenr de décalage; on

retrouvera dans quelques instants ce méme role tres important attribué a "z".

c Intégrale et dérivée

Les expressions des transformées de I'intégrale et de la dérivée f°(t) donnent une interpré-
tation complémentaire a la transformation; en effet, I'intégrale sur le temps a une conno-
tation d’accumulateur, et la dérivée celle d’'un variation différentielle.

L’intégration par parties de %' £(t) donne pour la dérivée:

4 L[f()] = sF(s) - f07)
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Les transformées

Soit a présent I'intégrale
t

g =] fv)dv
0

La dérivation des deux membres donne g’(t) =f(t), et en appliquant (4) ci-dessus on
obtient:

no—

®)  G(s) = 2 F(s)

On est heureux de voir que toute cette extension du temps de 0 a t se manifeste par une
simple prémultiplication "algébrique" par 1/s; celui-ci aura de ce fait une place d’gpératenr
dans les configurations de processus temporels.

La vertu la plus prisée en est la transformation des équations intégro-différentielles
(linéaires) en équations algébriques; en effet, souvent les variations sont exprimées par
rapport au niveau ou a ’état atteint, disons x, ce qui donne dx/x, soit la différentielle du
logarithme 1.x, conduisant a des solutions temporelles du type x(t) = ¢*". Intuitivement, il
n’est donc pas tellement bizarre que des transformations de variables du type e™'
ameénent a des simplifications de traitement de telles formulations.

La transformée discréte "'z"

On entre poliment dans z en effectuant la transformée de Laplace de la fonction @(t)
"discrétisée" (1), c’est-a-dire:

Llo(t)] = F(s) = j: [szof(nT)-S(t—nT)]eStch
= Zw [f(nT) . IwS(t —nT)- e . dt-
0 .

n=20

o0

n T'—nsT
> HaT-e

n

S

© Lo®]=Fs) =3 fnT)-c”

L’expression (6) donne donc la transformée de la "fonction échantillonnée" de @(t) de
période T, présentée sur la Figure 13.

a Cas duretard: Z7[Q(t)]

Se rappelant que expression e P peut étre considérée comme un opérateur de retard (de

pT périodes), on peut définir une transformée Z~ d’une série discréte en posant:
z=¢"

Dans ce cas, la transformation donne:

COES W LHE
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3.2.3

3.24

Cette version (initiale) correspond a ce qui est généralement appelé "fonction généra-
trice". En fait, elle est associée aux travaux de DE MOIVRE (cité plus haut), concernant
les fonctions génératrices de probabilités, ces dernic¢res étant obtenues par la suite des coeffi-
cients de polynémes en z. Comme cette voie n’est pas celle de cet exposé, la suite se fera
avec la formulation classique issue de la transformée de Laplace, présentée comme "cas
de P'avance" — ce qui est la bonne optique pour un gestionnaire pressé.

b Cas de Pavance: Z [@(1)]

La transformée Z™ d’une série discréte de temps positif s’obtient en posant dans (6):

2=t fy =flnT)
Ce qui donne:
0 F2) = L0 = 37 f-z"

Il apparait déja que argument "z" pourra jouer, dans les processus discrets, un role de
décalage temporel analogue a celui de 'expression ¢™T dans le cas continu.

Simple et directe

Epargnant quelques kilométres d’exposés aux promeneurs de cette interface, on entrera
directement dans la transformée-Z par son interprétation en tant que décalage d’un inter-
valle de temps. Si les intervalles de temps considérés dans la séquence temporelle sont
égaux, on peut utiliser 'expression plus simple: "unité¢" de temps. Dans ce cas, il y a une
confraternité formelle entre les transformées et les fonctions génératrices des masses
associées a des valeurs discretes entieres — celles qu’avait considérées DE MOIVRE.

Soit fi. une suite, c’est-a-dire une fonction a valeur numérique dont le domaine de défini-
tion est ensemble des entiers, k=0, £1, £2, ... Un exemple en serait VIR -k!, mais
celles qui seront considérées ici seront plus simples.

La transformation-z de la suite f;, définie sur les entiers positifs (0, 1, 2, ...) est la fonction
F(z) développée de (7) par:

®) F(z) = Zkoszk = fotfi 2y T

Quelques mots devront étre glissés plus loin sur la convergence de cette série et sur sa
relation avec la transformée de Laplace, mais on ne peut tout dire a la fois.

Inverse, perverse et complexe

Le titre 3.1 avait annoncé une jouissance fréquente et complexe; voici a présent pourquoi
elle est complexe et demande, comme on le craignait, une certaine souplesse. Les écri-
tures conventionnelles montrant la relation directe et la relation inverse entre le domaine
temporel et celui des transformées qui lui correspond sont:

©) F@z)=Z[f] et fi=Z'F@)
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La transformée inverse, faisant passer de I'espace des fréquences F(Z) (ou on est arrivé
tres facilement) a I'espace temporel f(k), doit s’écrire:

k) = 2Lm§r F(z)z" 'dz

L’intégrale fermée est prise dans le plan complexe de Z, selon une courbe circulaire dont
le rayon est celui du rayon de divergence de la transformée. On est content? On peut
aller plus loin?

3.2.5 Inputs, transformée et outputs

En principe 'argument Z n’est qu’opérationnel, mais des transformées de suites élémen-
taires vont aider a donner du sentiment a cette transformation. Elles montreront que la
contribution principale des transformées de suites est d’exprimer Uznteraction de séries
temporelles par le produit de leurs transformées, ce qui est alors une opération algébrique,
donc se prétant a des gymnastiques sur des engins plus adaptés a la souplesse et la grace
naturelles des Lectrices. En voici un facile d’emploi.

Soit fla fonction génératrice des inputs, A son opérateur et g sa fonction d’output. Le
graphe de base du processus dans le domaine des transformées est la Figure 14:

Figure 14. Inputs, transformée et outputs

u y(k) .
f ht g
Transformée de la Vecteur Transformée Vecteur Transformée de la
fonction d’inputs d’inputs de opérateur d’outputs fonction d’outputs

Conformément a sa définition (8), la transformée d’un fonction temporelle élémentaire
s’obtient par le produit du vecteur des valeurs successives par les puissances de 'argu-
ment Z. Soit donc la suite le plus élémentaire engendrée par une fonction f:

fi=1,1,1,..
k=0,1,2,

10) fT=120+ 12+ 1224127+ =T (2)

Définissant les vecteurs:

P=111.]ez=[2"2z122.],

il est clair que la transformée est dans ce cas le produit scalaire f*z.

12/12/12
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Soit a présent le cas de Uimpulsion unitaire... suivie de rien, de sa réponse et de la transfor-
mée de la réponse. Une impulsion unitaire est définie par un cri "1!" lancé a un moment
donné, disons l'instant n=0, puis plus rien... épuisement ou silence de mort, allez savoir:

fi=0, 0,1,0,0,..
=-2,-1, 0,1,2, ..

Ceci est évidemment un cas particulier de (10), ou il reste seulement f;T = 12°0=1.
Avec cela, la théorie des systémes fait un régal de petits plats mijotés. Cette transformée
de Pimpulsion unitaite — et sa réponse "g" — permettent de pénétrer doucement dans les
processus dynamiques sous influence, de méme qu’une brochette d’écrevisses flambées a
la vodka permet d’entrer doucement dans un repas, ou qu’une pointe d’arthrose aux
hémorroides permet d’entrer doucement dans une vieillesse presque sereine.
Voyons avec quelle aisance I'engin peut grimper une razpe, définie par:

£=0, 0,1,2,3,..

k=-2,-1, 0,1,2, ..

Le produit scalaire, trop familier avec les clients, ne sera montré qu’une seule fois:

an g =[o123..]/%

Quant au produit "scolaire", les profs et les parents le disent nettement moins perfor-
mant. En bande dessinée, les fonctions impulsion, palier et rampe sont sur la Figure 15.

Figure 15. Signaux d’input discrets élémentaires

»q
Signal (a) q
d’input
"impulsion"
PO ¢ o
_ e o | [ B ) [ ) ey " | | n
-1 0 1 2 3 4 3 4.>

11 serait intelligent de demander au prof si par hasard les séries formées par les transfor-
mées convergeraient vers quelque chose d'intéressant? La réponse est oui, mais pas sous
n’importe quelle condition: il faut transformer des fonctions raisonnables, et surtout il
faut que ce "Z"soit situé hors d’un rayon R™ dans un certain plan complexe dont on ne
dispose pas dans cet ouvrage, mais qu'on peut trouver dans des boutiques spécialisées
pour adultes. Donc, oui, ici elles convergent, et ailleurs, elles vont se faire outre.
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Ces convergences sont respectivement de:
(12) flT =1/(1-2) pour (f}), et
(13) ' =1/(1-2)>  pour (f)

L’expression (12) a une signification opérationnelle for intéressante. Soient:

[ : la fonction d’input qui fournit une impulsion unitaire a I'instant "0", puis plus rien
(c’était le cas (a) de la Figure 15);

g : La fonction d’output;
h : Topérateur affectant la série;
Oy : opérateur de décalage de k unités.

Le processus consiste a saisir chaque fois cette unité et I'ajouter telle quelle (A=1) a
I'impulsion suivante qui arrive; elle serait donc "remise en arriere”, soit "feed back" en
américain, ce qui est porté a la Figure 16 — qui améliore la Figure 15:

Figure 16. Foncteurs et feed-back

Foncteurs
uk)=1,0,0, ... 1,1, 1,.. yk=1,11,..

I gt o] O
Générateur ; h51 T Récepteur

Le processus résultant est bien str le fameux "feed-back", dans sa version le plus élémen-
taire. C’est la que s’exercera le génie de la transformée, mais il faut étre attentif a la fagon
dont le temps (et ses indices) se passe, en se rappelant la Figure 1. Ici f est génératrice
d’une séquence. L’impulsion de valeur 1 arrive en k=0; la suivante, qui vaut zéro, arrive
en k=1 et il en va de méme pour la suite.

* Sile processus était rée/, donc un flux physique, ce seul "1" serait fourni, suivi par des
zéros (1, 0,0,0,...); il passe par un foncteur neutre (ici by=1), puis il serait saisi a la sor-
tie et "remis dedans", ce qui ne donne pas un output 1, 1, 1,... On continue comme
cela a tourner en rond (ce qui donne une "loop" en anglais) tant qu’un bienfaiteur n’a
pas cassé le jouet.

* La Figure 16 montre que ce processus n’est pas réel mais n’est qu’un modéle.

En effet, c’est un signal qui est saisi a 'output et transmis par un capteur (et pas par un
"voleur de flux"); ce signal est composé avec I'input pour soumettre un nouveau
signal aux foncteurs et poursuivre le processus en tant quoutput. Du point de vue
temporel, le processus "patine" sur place en quelque sorte et, effectivement, 'expres-
sion (12) ne présente pas d’argument temporel explicite — la formulation est algé-
brique et non plus dynamique.
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3.2.6

Le mode¢le du feed-back est donc un modele de #raitement de signanx; on verra un beau
jour, pour confirmer cela plus pratiquement, que le feed-back est un processus dont la
rétromettance est a faible énergie comparativement a I’énergie du chemin prospectif prin-
cipal.

Ce qui vient d’étre dit pour le cas le plus élémentaire (celui de 'impulsion) est généralisé
pour les signaux d’inputs moins naifs, dont quelques exemples seront présentés. On peut
d’ailleurs engendrer les autres a partir de compositions de ce "module" de base.

Mais alors, au sens littéral, est-ce qu’on a "perdu son temps"? La réponse est non: son
expression a été formulée d’une nouvelle facon concentrée, et on peut le libérer par la
transposée inverse, c’est-a-dire revenir dans le domaine temporel. Ceci est exprimé par la
fonction d’output dans le domaine temporel [g(k)]; a I'issue de la transformée, on sait
comment il se comporterait dans la suite si on le laissait filer.

Du bon usage de F(z)

a Linéarité-additivité

Soient deux fonctions génératrices de séquences numériques f(k) et g(k), et deux scalaires
a et b. La transformée-z de toute combinaison linéaire h(k) = af(k)+bg (k) est additive:

0

H(z) = Y [af(k) + bg(k)]z ™~ = aZf(k)Z_kerZg(k)z_k = aF(2)+bG(2)

Voila qui regle les comptes du design en paralléle.

b Série et produit

Soit une fonction génératrice de séquences numerlques f(k) et soit g (k) 'ouput du pro-
cessus. L’input subit deux transformations successives, gérées respectivement par les
foncteurs hy (k) et h,(k). Dans ce cas, on I'a dit, la composition est multiplicative, et cette
opération est commutative sur les transformées, qui sont algébriques. La Figure 17
montre le cas le plus simple d’un couplage de deux transformées. Avec un peu d’adresse,
mais beaucoup plus de clarté et moins de charge visuelle, on peut faire de fagon équiva-
lente toutes les simplifications de configurations algébriques telles qu’elles ont été présen-
tées sur le Tableau 2 des «Mode¢les de Processus».

Les nands d’un tel graphe forment la composition des signaux (par exemple en tant que
concentratenr, tel un opérateur d’addition) ou ils rendent compte alors de la valeur de la
variable ainsi formée. Ils sont aussi distributenrs de cette valeur dans d’autres branches.

Sur les arcs s’effectuent les transformations F (ici les transformées des opérateurs A), qui
sont les "blocs" dans les configurations pat... blocs. Celles-ci ont une mission de repré-
sentation d’équations algébriques simultanées mises dans un ordre qui explicite la forma-
tion de valeurs de variables a partir de séquences de signaux regus via d’autres variables.
L’algebre des configurations ne "résout" pas, mais apporte les transformations qui
amenent a une formulation "standard", de solution déja connue.
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Figure 17. Réduction d’un couplage de transformées

h(k) hy(k) hy(k) hy(k
flo—p—o—p o 8k = f) o5 o+1() o—p— 8K
hy(k)=h3, hy(k) =k
f9=1,0,0,0,.0——p—0—p— gk)=1,1,1,.. —p—0—p —0—p — 8B
hi=1/(1-7) hl=z/01-2)
f19=1,0,0, .. gl)=111,.. )= 0,1, 2, 3.
ol —@-lE] T
. s P
) S O hi
—> O+ —_—
nY h;
h = [ (k+1)(k+2)] g(k)=somme des k
Sk > o > o—>» premiers nombres

hT:th'hzT _ Z/(l_Z)3 entiers

Cette dualité par laquelle les transformations sont soit sur les arcs, soit dans les blocs, se
retrouve lors de la modélisation de problemes des EAH lorsqu’on présente les choses
d’une part selon les configurations par blocs et d’autre part selon les graphes d'influence, vus
dans Pexposé sur «La Systémographie». Lorsqu’il s’agit de description de processus, le
graphe d’influence, méme s’il comporte des boucles, se doit donc de donner un sezs de Jec-
ture du modele. Si cela n’est pas possible, la configuration est invalide ou ne représente
pas un processus, mais seulement une architecture statique interactive dans laquelle le
passage du temps ne peut pas étre rendu explicite.

On retrouve aussi cette dualité dans les représentations de processus de production appe-
Iés les "GRAFCET", en relation avec TOFFSET, Association Frangaise de Cybernétique
Economique et Technique, qui en fournit les publications.

c Les fonctions puissances

Soit 4 exprimer la transformée de f{k)=w", pour k>=0:
Sae k,k _ < -1k o . .
(14 H(z) = z wZ = z (wz ') = ——— si |2]>w, sinon diverge.
k=0 k=0 1—wz

Ceci décrit en effet une série géométrique de raison r = W.Z'l, d’ou on a déduit la trans-
formée (14), et qui a pour condition de convergence que |r|<=1. On fait de la sorte
apparaitre des "poles", les racines du polynéme qui annulent le dénominateur — font
diverger.
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Atteindre ces poles d’ici ferait une excursion dans des contrées trop froides, mais on peut
en voir un d’ici en grimpant sur expression (14): si Z est interprétée comme une variable
complexe, la somme diverge pour |Z|=w, le dénominateur devenant nul. Faire tendre Z
vers 2w montre en revanche une convergence vers Z(l/z)k =2.

d Le produit de convolution

L’expression (14) est écrite ici avec "w" pour faire référence a la "somme de pondéra-
tion", présentée avec la somme de convolution. Ceci va fournir une propriété fondamen-
tale des transformées a savoir que dans le domaine des transformeées, 1a fonction de réponse
G(2) est le produit de la séquence de pondération H(Z) par la fonction d’input F(Z):

(15) G(z) = H(z).F(z)

Z—Réponse = Z—Pondération . Z—Input
Il est remarquable que la propriété (15) soit valide quelle que soit la fonction f d’input.
L’exemple le plus élémentaire suffira donc pour lillustrer. Soit une fonction génératrice

d’input qui soit simplement ’ajout d’une unité, u(k)=1 pour k>0. Sa transformée est 1/
(1-z)°". Dés lors, la transformée de la réponse est bien:

1 | 1 1 w
16 G(2) = H2)F(2) = —— —— = ==+ ——= - ——]
l—wz1 l—z1 I-w l—z1 l—wz1

La transformation inverse de (16) donne la réponse (17) dans le domaine temporel:

k!
(17 gk) = Tw

Ce résultat (17) est conforme a celui qui a été obtenu par convolution; I’exemple donné
ci-dessus est en effet explicitement:

k
> Oh(k—j)f(j) = H(2)F(2)
i =
Celui-ci est toutefois plus direct et élégant et surtout peut etre appliqué a des fonctions
d’input multiples et sophistiquées.

e Expressions des translations

L’expression de la transformée d’une translation de k périodes antérieures s’obtient cor-
rectement en construisant une suite g, obtenue en effectuant une translation vers la
droite de la série f originale; a cette fin, la série décalée est constituée par le produit de la
série originale par une fonction d’échelon unitaire u, ) qui n’est non-nulle que k inter-
valles de temps plus tard.

n-k

La nouvelle série est donc g,=f;, 1.4, ; elle se définit par:

0, si n<k

f,_(sinxk

& ~

La Figure 18 fait déraper les signaux, ce que les mathématiques appellent une #ranslation.
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3.3.1

Les transformées

Figure 18. Expression d’une translation de séries

A

Signal f, Signal f{ | U,
L e
To=01 2 3 4 5 6 > = e >

La transformée est:
[e0) “n o] -
G(z) = g -z = f u -z
n n-— n-k
2, 2,
-k —-k-1 -k-2
= fyz  +1,z + 1,z + ...

S [foz+ fOZH)

Des lors,

18) Z[f, . -u, ] =z “F(2)

Le cas particulier de k=1, c’est-a-dire le décalage d’une unité de temps de la série tempo-

+ 6,2+ ]

relle, implique donc la pré-multiplication par 771 soit: 2 1F (2).

Applications de Pexpression de la translation droite

L’expression des décalages par la transformée-z permet de multiples développements,
précisément en rendant algébrique le traitement des repéres temporels. De cette variété,
on extrait ci-dessous trois petits exemples, choisis parce qu’ils sont associés a des proces-
sus en économétrie et en gestion. Il s’agit des modeles auto-régressifs — déja passés de
mode, donc moflés sans délibération — du "signal Morse", de 'opérateur "hold", et de z

en tant que marqueur temporel.

Le signal "Morse"

Un "trait Morse" p,, (k) — permettant 'usage du fameux code de télécommunication — est
une suite formée par un signal d’amplitude unitaire et de largeur k. Il est donc défini

mathématiquement par:

(k) =

l,pour n=0,1,2,...,k-1

0,pour n=k k+Lk+2,...

F-33
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3.3.2

Cette suite est obtenue en soustrayant d’un signal unitaire u(n) ce méme signal décalé de
k unités vers la droite, ce qui se voit sur la Figure 19.

Figure 19. Représentation d’un trait Morse

Signal p, (k) = u,-u,

_4 -~ ' “ee

Comme on a obtenu que la transformée du signal u(n) est z/(z-1), on a:
k
R/ *,_ oz —1
19) 2lp,(0))= 2= (1-27= E=

zZ —Z7Z

A présent qu’on dispose de (19), on peut se permettre de faire des tas de choses pas
convenables, y compris envoyer des messages en Morse (ou SMS). Comme cas particu-
liers, on retrouve des petits étres familiers:

* Sile trait est de largeur k=1, on retrouve 'impulsion unitaire 6,=1 en n=0. Mais il est

plus amusant de la pousser un peu vers la droite, et définir 8, ¢, c’est-a-dire:

d,.1sin=1 et 0,1=0sin#l

11 suffit de faire k=1 dans expression (19), puis d’appliquer la translation droite, d’ou:

(20) Z[3,q)] =z

¢ L’impulsion unitaire a 'origine, donc pour n=0, se fait en faisant... n=0. Ainsi:

Z[8 = 2'=1

Cette élégance et cette sobriété donnent de I'aisance d’interprétation a cette variable opé-
rationnelle désignée par z.

L’opérateur '""hold"

L’opérateur dit "zéro hold" en américain effectue une modulation discréte d’un signal
continu en conservant la valeur échantillonnée pendant un intervalle de longueur T (dans
les notations de cette section).

La Figure 20 montre un peu naivement si cela se passe bien; le modele mathématique
permettant de I'obtenir est une exploitation des différences analogue a celui du trait
"M n

orse".
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Figure 20. Opérateur ""hold": modulation discréte d’un signal continu

Signal A Cll—'/
£() _,I

T 9IT P Temps

=
o — - —

|
|
|
T 0 T 2T 3T 4T

La portée pratique de cet exploit est importante en ingénierie. En effet, le controle de
processus (réels, industriels) se conduit par un signal de commande appliqué a un dispo-
sitif physique et permettant la correction d’écart par rapport a une référence. L’objet d’un
tel systeme de contrdle est de trouver une forme fonctionnelle du signal de contréle
eq(k), a savoir la relation entre le signal de valeur (fonction) de référence r(t) et la valeur
observée de c(t) qui soit a méme de maitriser le comportement de ¢(t) dans le temps.

Ce controle se réalise effectivement par une (ou plusieurs) variable décisionnelle ou
"manipulable", désignée par m(t) en tant que fonction temporelle continue. Cette variable
(souvent un vecteur) est appliquée au processus pour donner a celui-ci (désigné par ¢(t))
un comportement plus conforme a une référence donnée r(t).

L’argument z en tant que marqueur temporel

Lorsqu’on considere une fonction de variables, on a une expression par laquelle les éléments
entrant dans cette fonction sont connectés par des opérateurs. Ainsi en est-il typique-
ment des polynémes impliquant des puissances de 'argument, disons f(x) = b + by x!+
b3X3 - b7x7, ou ce qu’on veut. Le tout est composé, et peu importe 'ordre des termes
présents, sinon la logique visuelle de expression.

Lorsqu’on parle des séguences — le cas de cette section — on a pris la précaution de qualifier
"f" de fonction génératrice des valeurs, lesquelles entrent dans le processus dans un ordre
déterminé, et cet ordre est pertinent. Il convient donc d’avoir un indicatenr de la place
qu’occupe chaque terme de la série, et de pouvoir conserver ou reproduire cette indica-
tion. La lecture de la définition montre que c’est 'exposant de Z qui indique cette place
dans la séquence..."cet élément est situé il y a mon exposant de décalages d’indice". Mais
attention:

e Sl s’agit de reperes d’une séquence, c’est-a-dire des valeurs qui arrivent dans 'ordre 4,
b, ¢, d,... , le d arrive avec un décalage de 3 unités; si le zemps a passé, et que ce sont des
intervalles, 4 arrive trois périodes plus tard que a.

» Sl s’agit d’une série chronologique, en revanche, d est "vieux" de trois périodes de
non,

temps, disons trois semaines, par rapport a "a"; cela veut dire, dans le temps réel, qu’il
est déja passé par ici il y a trois semaines, alors que « arrive seulement "maintenant".

F-35
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3.3.4

Comme il est antérieur, J pourrait alors étre prédictif de a, ce qui se passe d’ailleurs

dans les modeles de prédiction auto-régressifs.

La Figure 21 expose une petite collection de transformées de décalages.

Figure 21. Graphe de flux d’équations aux différences

Equations avec décalages

8(k) = £
&) = b fik-1)

gk =bglk-1)

8(k) = bg(k-1) + £k-3)

g(k) = fk-1) + £k-2)

gk = fi(k-1) + £(k-2)

1/(1-b2)
o—p—0—p— gk

Somme de fonctions génératrices

Graphes de flux et h]r

1
fHo—>»—0—p o0——p

fk) o—>»— OEFO—>—

ou: @+

bz
z 1
ﬂk) ’ O\-dj
z z

) O—p—
f:?(k) o—»—0 V4

f(k) pour k=0, 1, 2,...
0

Appliquant (21), on a:

ZIfK)] = Z [g(K) - g(k-1)]
F(z) = G(z) - 2\ G(2),

ou g(k)=0 pour k<0.

gk

gk

P40

8k

P40

P40

Le décalage prospectif, Z| flk+j)], a aussi cette élégante sobriété et interprétation:

@) Z[fk+1)] =2 L[fL ) - A0)]

L’expression de la transformée du décalage, (21) ci-dessus, permet d’exprimer directe-
ment la transformée d’une somme, soit:

k
CEDY
i=
La transformée s’obtient en notant que:

g(k) - g(k-1) = fll),



3.3.5

3.3.6

Les transformées

Ceci conduit au résultat (22):

22) G(z) = Z_. F(z dans le domaine de convergence |Z|>R"
71 &

Les différences rétrospectives

La différence rétrospective s’écrit généralement par 'opérateur V de gradient:
Vi) = flk) - flk-1)

La transformée s’obtient en appliquant directement le décalage:

23) Z[VfK)] = 1.FZ) -2 'Fz) = 1-z)F(z)

Par induction, (23) se généralise a (24):

@4) Z[VfR] = (1-zH"F(z)

Les différences prospectives, soit f{k+m) - f(k), impliquent (2-1)™, et sont moins utili-
sées. Tant mieux.

Le résultat (24) permet d’aborder sereinement les équations linéaires aux différences, ou
la dynamique de la fonction-réponse, g(k), est auto-régressive et influencée par une
séquence pondérée des inputs u(k) décalés. Cette formulation date de la section 1, d’ou
elle est reprise ici en (25) avec ses indices "t":

(25)  Y¢-a1¥e1 - Y2 - - - ApYen = DoUp + bpugq +bougs + ot by que 4

11 suffit d’écrire les transformées Y(Z) et U(Z), que 'on met en évidence, pour le temps
t="maintenant", puis les opérateurs de décalages, ce qui aboutira a (20):

Y(2) [1+a,2 +a, 22 + .. 42,2 = UZ) [by+b; 2z +byz2 + ... +b, 27"

Y(Z) = [bytbyz 4+b, 22 + . +b 2] / [1+a 2 a2 + .. +a, 27" UZ)
(26) Y(z) = H(2).U(Z) et on a bien la fonction de transfert H(z) = Y(7) / U(z)

La résolution temporelle se fait donc par des opérations algébriques appliquées aux
transformées; pour connaitre ensuite le comportement de la série temporelle résultante,
le truc classique est d’effectuer le rapport des deux polynomes, trouver les racines, puis
arroser et laisser pousser la solution qui devrait bientot bourgeonner. Cependant, c’est si
long et ennuyeux que I'on ne fait faire cela que par des éleves.

La transformée inverse

L’inversion de la transformée sert a exprimer, et porter en graphique, le comportement
de la série d’ouput dans Iespace temporel, ce qui est évidemment le but de I'analyse du
systéme dynamique. Pour ce faire, on utilise les tables de transformées. Epanouies dans
les Golden Sexties, ces tables sont si copieusement garnies qu’on trouve peu de fonctions
qui ne figurent pas a leur menu.
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Par exemple C.S. BEIGHTLER & al. «A Short Table of Z-transforms and generating
Functions», Operations Research, Vol. 9, 4, 1961. 1l est dommage cependant de faire tant de
si belle systémique puis de se contenter d’'un mode d’emploi — c’est comme apprendre
I'informatique puis utiliser Windows...

De toute fagon, il faut torturer les expressions de la fonction-z de transfert jusqu’a ce
qu’elles se mettent a table. Alors on n’en montre a présent qu'un seul truc, celui des poly-
némes, puis on s’occupe d’autre chose.

Lorsque Z se présente comme une fraction rationnelle, il suffit de diviser le numérateur
par le dénominateur pour obtenir une série en z-1 dont les coefficients sont les valeurs de
f(nT) désirées. Soit 'exemple le plus simple:

z
zZ—1/2

@  Z[AY] =
Effectuant la division, on obtient:

b)  Z[f©] = 1.2°40,5.2140,25.22+0,125.2+ ...
F© = (1280 +(2) L8t +(12)2.8(t-2T)+ (V2)> 8(t-3T)+ ...
O =1.8(0+0,5.8(-T)+0,25.8(t-2T)+ 0,125.8(t-3T)+ ...

La divison de (a) parait farfelue. On peut pourtant commencer:

2/(z-V2) = 1+ reste Va/(z-2) = Vor L + reste 1/4.270 / (z-V5)

On a donc jusqu’ici:

1+ Y + 1742l (z-'/2) + ... dont le dernier rapport s’arrange comme suit:
2 -1
z z/z z

© z—1/2:

(z— 1/2)/z2 1272
De la sorte, on voit comment se dessine la suite avancée en (b) ci-dessus.

Lorsque les degrés du numérateur et du dénominateur sont plus élevés, il est préconisé
d’utiliser la formule itérative suivante:

-1 -2 —-n
_ a0+alz +a22 + ...+anz
Z11()] = —
- - -m
l+b,z +byz "+...+b_z
| 2 m
-1 _
= SO+SIZ +S2Z + ...
ou:
k
S, = A — Z b, s avec 2, =0 pour k>n
i=1

En effet, il suffit de partir de Iégalité:

-1 -2 - -1 - -1 .
agtaz +a,z +..+az = (l+bz +..+b.7Z )-(sp+sz +...

m
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3.3.7

3.3.8

Les transformées

On en tire:

K K
a = zobi'sk—izsk+zl b;- sy

Et voila le mode d’emploi officiel; le vrai consiste, comme toujours depuis qu’existent les
examens ¢écrits, a recopier le résultat de quelqu’un qui I'a déja obtenu.

Conditions de stabilité

Une contribution majeure de I'exploitation des transformées est de prédire le comporte-
ment des fonctions temporelles soumises a un input, avec pour theme privilégié la stabi-
lité de cet output. Ceci inclut toute une panoplie de domaines d’études, entre autres tout
ce qui se formule en équations différentielles ou aux différences, la stabilité des régimes
périodiques ou encore la convergence de processus itératifs de calcul numérique par les
ordinateurs.

On n’a pas besoin de tout cela ici — ce parcours est avant tout fait pour renseigner sur les
rites de certaines sectes infiltrant des systemes dans la gestion; voici seulement le principe
général du test standard de stabilité pour les systémes a coefficients constants.

Dans ce contexte, un systeme linéaire discret est considéré comme stable si a tous les
inputs bornés correspondent des inputs bornés. Cette propriété s’explore en séparant
I'ouput — donc la réponse du systéeme aux inputs — en deux parties: d’une part celle qui
est associée au régime final (due a la fonction d’input) et d’autre part celle qui est associée
au régime transitoire.

La transformée de Poutput s’exprime donc par le produit de la transformée de I'input par
la transformée de la fonction de transfert. Celles-ci sont a exprimer par le rapport de
deux polynémes, dont la factorisation donne au dénominateur des facteurs en "(z-r)".
Ces 1; sont les "poles" de la fonction: le dénominateur s’annule pour ces valeurs (ce qui
leur fait porter le nom de "valeurs singulieres"), et fait exploser la fonction de transfert.
Leffet est immédiat: la dynamique hésite, se pame dans des états transitoires, oscille
entre plusieurs directions, puis les poles la font diverger et soudain, par une aspiration
irrésistible, emportent le tout, sentiments, pique-nique et carte de banque, vers un infini
qui brille au bout du tunnel.

Pour éviter les instabilités et les divergences extrémes qui viennent d’étre évoquées, il
faut et il suffit de rester modeste : si on ne considere que le cas linéaire courant, il faut et
suffit de garder son "z" dans son rayon de convergence, soit, en valeur réelle:

|z|<1

Valeurs initiale et finale

L apport de I'expression de la valeur initiale et de la valeur finale est de permettre de
connaitre la valeur d’origine de la série, f(0), lorsque sa transformée (unilatérale) est
connue. De méme, on peut s’intéresser a sa limite pour k — co.
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3.3.9

3.4

3441

Se rappelant que, sur la suite f;, définie sur les entiers positifs (0, 1, 2, ...), la fonction F(Z)
a été définie en (23) rappelée ci-dessous:

(23) F(z) = Zk_ofk-z‘k = fotfioZ A7

De (25), et de la convergence pour tout |z| >R, il résulte que:

f(0) = lim F(2)

Cette propriété sera exploitée explicitement a la section 4.2.2 pour exprimer les biais a
long terme de mode¢les linéaires d’extrapolation.

Expressions canoniques des transformées de modeles linéaires

L’extension a plusieurs inputs et outputs s’exprime en les vecteurs respectifs et en adap-
tant les dimensions matricielles des opératenrs en conséquence de cette extension de
Pespace de référence; le modele /Znéaire a des lors des opérateurs matriciels. Ceci autorise
une méme écriture synthétique pour un processus temporel plus général, exprimé en dis-
cret par (27)-(28) qui reprennent le (17)-(18) initié a la section 1.3.4:

27 x4 =Ax, +Bu
Ceci forme les expressions dites canoniques des transformées de modeles linéaires, dont les
évolutions temporelles sont les suivantes respectivement en discréte et continue:
z¥(z) - zy(tg) = b ¥Y(z) + bR(z)
s¥(s) - y(tg) = b ¥(s) + bU(s)
C’est une synthese des apports formels parcourus dans cette section. Leur construction

plus systématique et leur exploitation est une référence commune aux trois exposés sur
«Les dynamiques» du Tome Nord.

Résumé de Pexploitation des transformées

Propriétés des graphes de flux

Les propriétés des graphes de flux de transformées permettent des simplifications du
design processus en interaction par la composition algébrique des signaux, donc contri-
buent a la réduction de modeles. Les grands classiques sont évidemment les processus en
série, en paralléle et en feed-back.

La condition de validité est d’obtenir la méme fonction de transfert; la portée pratique de
cette condition est que, si 'on soumet un input au processus, I'expression de 'ouput soit
la méme quelle que soit la configuration choisie pour décrire le processus.



3.4.2

Les transformées

Cette modélisation est une aide a I'analyse de systéme par investigation formelle des pro-
priétés du systeme. La procédure traditionnelle a cette fin est de:

e Déterminer les équations ou la fonction de transfert de chaque composante du
processus (elles ne sont pas uniques);

¢ Choisir un mode¢le de représentation, par exemple la configuration par blocs, ou le
graphe de flux de signaux;

e Formuler le mod¢le en connectant les composantes (noeuds, branches, blocs) de
facon appropriée; notons que cette approche "modulaire" convient a I’analyse, mais
qu’elle est utilisée pour faire le "design";

¢ Déterminer les caractéristiques du systeme, avec pour objectifs de connaissance:

* Les propriétés de stabilité;
* Le régime en état stabilisé;
* Le comportement et la longueur de I’état transitoire.

Les méthodes classiques, de présentation graphique mais reposant sur ’analyse mathé-
matique, pouvant aider 'analyste sont:

* La méthode de localisation des racines (le "root-locus"), c’est-a-dire les "poles" de la
fonction de transfert; les suivantes sont dans le domaine des fréquences;

e Les graphes de NYQUIST, procédures graphiques visant a diagnostiquer les stabilités
absolue et relative des systemes de controle a boucle fermée, par le graphique de la
fonction de transfert du systéme a feed-back mis sous forme canonique;

¢ La représentation de BODE, s’intéressant a 'angle de phase de la fonction de réponse;
* Les chartes de NICHOLS représentant les fonctions fréquentielles de réponse;

¢ On dispose de certains théoremes de stabilité, telles que les conditions LYAPOUNOV,
mais celles-ci ne seront dévoilées que par I'acces aux archives du KGB — donc pas
pour un Lecteur trés ordinaire.

L’analyse de ces propriétés est incomparablement plus simple lorsque les systemes dyna-
miques sont linéaires — typiquement les équations aux différences ou différentielles — ou
qu’on peut les ramener a la linéarité par des transformations, approximations et triche-
ries.

Performances des processus

Les performances de processus formels sont spécifiques selon le domaine (temzporel ou fre-
quentiel) de leur expression. Elles s’expriment généralement en termes de la réponse; elles
concernent trois propriétés importantes des systemes dynamiques:

» La vitesse de réponse;

e La stabilité relative;

e L’adéquation, la précision, Perreur relative tolérée.

* Dans le cas des filtres, la performance s’exprime, presque par la définition d’un filtre,
en termes de minimisation de l'interférence par rapport au signal, la tradition faisant le
rapport signal/bruit. Des propriétés (requises pour que le filtre soit admissible) sont le
fait d’étre convergent et non-biaisé;
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3.4.3

3.4.4

Dans le cas de Uajustement statistique, la performance s’exprime en termes de variance
des résidus, ce qui équivaut a la qualité de la description du mode¢le par rapport aux
observations;

Dans le cas des morphions, et surtout des bougies japonaises (décrites dans les «
Modeles de processusy), les critéres sont moins incontestables, en raison de la compo-
sante subjective des morphions. En fait le critere est plutot associé a la procédure,
C’est-a-dire au nombre d’itérations de 'heuristique servant a les diagnostiquer.

Critéres dans le domaine temporel

Dans le domaine temporel, les critéres usuels concernent d’une part les comportements
transitoires, normalement décrits en termes de réponse a des fonctions d’inputs élémen-
taires, telles que 'impulsion, la marche, la rampe, la parabole et, d’autre part, le compor-
tement final, c’est-a-dire en régime définitif:

Le délai, souvent défini par le temps requis pour que la réponse atteigne un pourcen-
tage donné, par exemple 50%, de sa valeur finale;

Le temps de croissance, ou temps requis pour que la réponse passe de a% (disons 10%) a
b% (disons 90%) de sa valeur finale.

Le temps d’établissement, c’est-a-dire le temps requis pour que la réponse a un input
unitaire reste dans des bornes spécifiées;

La constante temporelle prédominante mesure le caractere décroissant de la réponse transi-
toire.

Du point de vue de I’état final, les propriétés sont:

L’overshoot qui est une mesure de stabilité relative. C’est la différence maximale entre
les solutions transitoire et finale pour un input unitaire (il est souvent exprimé en % de
la solution finale);

L adéquation et 1a précision concernent les mesures d’erreur de I’état final résultant d’une
application d’input spécifié. Un exemple facile et courant en est donné ici pour 'extra-
polation par le lissage exponentiel qui se vend si bien.

Critéres dans le domaine fréquentiel

La marge de gain est une mesure de stabilité relative, égale a I'inverse de la valeur de la
fonction de transfert de la boucle ouverte, évaluée a la fréquence a laquelle I'angle de
phase est de -7 (donc au changement de phase);

La marge de phase est de 180 degrés plus 'angle de phase de la fonction de transfert — en
boucle ouverte — au gain unitaire; le dé/ai, quant a lui, s’exprime en fréquence
moyenne, mais ne s’interpréte pas de fagon évidente.

La largeur de bande est 'intervalle de fréquence de I'input pour lequel le systeme répond
de fagon satisfaisante (par exemple de 20 a 20000 cycles par secondes pour un ampli-
ficateur dit de haute fidélité).



4.1

4.1.1

Deux modeles de processus en gestion

La contribution de ces études de performance est de faire du design par analyse, lequel est
accompli en modifiant les caractéristiques d’un systeme existant en affectant sa structure;
le schéma général de cette procédure figure dans «LLa Genésey, sous le titre « Analyse d’un
systeme-objet». Le but est de lui faire rencontrer des spécifications de performances,
celles-ci sont exprimées par des variables de références et des contraintes.

On en verra une généralisation via la téléonomie et les "changements désirables et fai-
sables" lors de l'investigation et I'intervention dans les Ensembles d’Activités Humaines,
themes qui ont le plus de succes dans le Tome d’Ouessant.

Deux modc¢les de processus en gestion

La fonction de trésorerie

Formulation de mouvements de liquidités

Soit L le niveau de Liquidités monétaires de I’Association de Systémique "Joie et Santé".
Ce niveau au moment k se constitue par le niveau précédent (Iy_;) plus les manipulations
(my) moins les dépenses (d}). Ces notations ne sont pas au hasard:

e "L" tient pour "Level" en américain. Cette variable représente donc un accumulatenr
dans le domaine discret (ce serait un zuégratenr dans sa version continue);

* "m" indique une variable "manipulable", c’est-a-dire, selon la tradition écrite, une

variable de commande. Elle sera plus explicite a la section 7 mais, dans le cas présent, il
s’agit simplement de retraits ou dépots dans les comptes de réserve; ses unités sont
donc celles d’un flux, une quantité par unité de temps;

» "d" indique les dépenses, qui sont un flux exogene, c’est-a-dite non maitrisable par le
trésorier — le "controleur du systeme. Quand il sera adulte, ce 4 deviendra un jour une
"driving matrix".

La description de mouvements de liquidités est donc:
@ L= Tgq +my - dy
Quand a la politique de controle, elle consisterait a faire des ponctions ou retraits de

réserves de facon a garder le niveau de trésorerie proche de zéro. Une formulation tres
simple est une moyenne mobile des derniers niveaux, disons les deux derniers:

(b)  my =-V2[ly gty o]

Comme ce sont les dépenses d. qui "tirent" le processus, et que c’est la variable de déci-
sion my. qui intéresse le gestionnaire, celles-ci seront respectivement I'input et 'ouput du
processus. C’est ce que montre la Figure 22, ou:

¢ L’impulsion dy entre avec le signe négatif;
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¢ L’accumulateur I est la rétromettance élémentaire conservant une unité lorsqu’elle
est ajoutée, C’est-a-dire la réponse a une impulsion unitaire 1, 0,0,... soit L(Z)= 1/(1-7).

Figure 22. Réduction du graphe de flux de... liquidités

Processus de base: 1 LT(‘ )
K
d'Qo—»—0—p 0—p — mlp

Moyenne mobile L, = V2[ L + Li_,]:

-2
LT o—»— @—»—o —
ZZ

Composition:

1 1/(1-7) Z RVA
dT(k) —— O—>— —>—O0—p mT(,é)
)
Réduction du design en série: 5
_l ) Z+7Z
-1 2 1-Z
dit) > o m'p)
C 1 )

Réduction de la boucle:

d'l) —»—o0 > o—p—  m'p)
2
La réduction globale donne: Z+Z
2-7+7° .
d'(K > o > o—»p m' k)
Soit: H(Z)
d'k) —»—— o > oy m'k)

La fonction de transfert est écrite H(z). Il convient a présent de I’élucider pour exprimer
la transformée inverse, dans le domaine temporel. A cette fin, on effectue la "longue divi-
sion", de ces deux polynémes, et on retient les coefficients du quotient comme éléments
séquentiels de la série m(k) résultante. Ces coefficients donnent:

© m(k)=0,1/2,3/4,1/8,-5/6,-7/32,3/64, ...

11 est manifeste que, sous l'effet de 'impulsion, (c) vacille un peu d’un signe a autre, mais
ses oscillations s’amortissent, et le processus est donc asymptotiguement stable.

Mathématiquement, cette propriété est obtenue sous la condition:

lim f(k) = lim (z-1)f"
k—> Z—1

Tandis qu’on a déja vu que, de I'autre coté de... infini:

£0) = lim f'
7 —> o
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4.1.2

Deux modeles de processus en gestion

La variété des temps

L’étude et la formulation de modeles de trésorerie demande une incursion générale du
processus global de 'EAH, de I’établissement concerné, et spécifiquement ceux qui
engendrent des flux ayant leurs équivalents monétaires. Bien entendu, quelles qu’en
solent les voies et la complexité, le regard ne s’allume que lorsqu’il se penche in fine sur
ce qui reste concretement dans la caisse, en fait le solde de trésorerie nette; celui-ci peut
étre constitué des divers instruments de paiement disponibles dans 'immédiat. Ce solde
est la résultante en temps réel de multiples processus qui ont des "timings" différents, ne
forment pas des cycles imbriqués, et impliquent a la fois les engagements et les mouve-
ments courants de ’exploitation.

Plus généralement, la doctrine de la trésorerie suggere un partitionnement en "timings"
de plus en plus serrés que 'on peut résumer par le Tableau 3. La hiérarchie temporelle
peut se construire soit par type d’activité — de la basse a la haute fréquence, ce que fera un
peu la Figure 23 —, soit par type de transaction financiére, caractérisée par le "terme" tem-
porel, ce qui est le cas du Tableau 3. Il n’y a pas de "cycle" puisque les échéanciers se
créent et se recouvrent continuellement.

Tableau 3. Variations de trésorerie selon leur timing

Patrimoine Finance a M.T. Exploitation

P+

P-

F+

F-

EY E

Bénéfices

Pertes

Emprunts

Placements

Recettes Dépenses d*-

d’exploitation | exploitation

Amortissements

Reprises sur
amortissements;
réduc. de valeurs

Crédits

obtenus

Avances
aux tiers

Emprunts Placements

a coutt terme a coutt terme

Emprunts a L.T.

Remboursements

Avances
recues

Remboursements
de crédits

Cessions
d’immobilisés

Transferts
aux réserves

Leasings
obtenus

Subsides; augmentation

de capital en especes

Investissements;
Reprises immobilisés

Aléas devises

Aléas fiabilité clients

Avances permanentes
des associés

Bénéfice distribué

Quant a Papproche du "processus global", il y en a plusieurs exemples particulierement
spectaculaires dans ces exposés, tels le processus du patient hospitalier (a la fin des
«Modeles de Processus»), ou celui d’'une entreprise de pompe de chaleur (dans «Le
Domaine de la gestion»), ou encore les schémas d’intégration de données d’une ville,
figurant dans les «Processus et synthéses d’information» du Tome d’Ouessant.
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Présentement, plus focalisé et dédicacé au probleme de la trésorerie, on retrouve page 29
PH. KNEIPE, Gestion de la trésorerie de lentreprise, (De Boeck Université, Bruxelles, 1987)
une «Figure 2» ayant pour titre «Schéma de syntheése de I’évolution temporelle des
phases du cycle d’exploitation». Ce schéma ne concerne que 1"entreprise” typique de pro-
duction-vente, mais a au moins le mérite de la clarté. La Figure 23 essaie de refaire correc-
tement cette présentation, car 'ouvrage ne parait plus aisément disponible, mais comme
toujours seule la lecture de la référence citée peut respecter I'apport de cet auteur.

Figure 23. Phases d’une exploitation industrielle du point de vue de la trésorerie

Phases Livraison Production Production Livraison
opérationnelles maticres phase 1 phase 2 client
Achat premieres  Faeture Vente Facture
Phases .\ . . .
dinistrati matieres Sfournissenr Pai client client
N aiement ;
administratives premires Encaiss.
N facture facture
P ases fournisseur client
financiéres ¢
v v v ¢ -
T T, T; Ty Ts Ts T; Tg Ty Tho
. Approvi-
Délais sionnement Livraison
< P|  Mat. premicres, Produits | Produits
Stockages conditionnements semi-finis | finjg
< | g
Dettes/ Dettes fournisseurs
. Créances client
Créances o <
Crédit L.
f . Crédit
_ ournisseurs clients
Financements | >
Devises + Devises = et salvabilité
Risques < > < >
Prix d’achat + Prix de vente -
da |
|
P Détériorations de marchandises N
| | 2
Durée du cycle L Besoin de financement ‘
. P |
financier lié ‘ ‘ ’ »
a I'exploitation ’ ‘

Refait de: «Schéma de synthése de Iévolution temporelle des phases du cycle d’exploitation» (gp. cit. p.29)

La variété de "timings" de processus d’activités rendrait donc pusillanime de vouloir
confier aux instruments formels de théorie des systéemes la modélisation — puis la maitrise
et les décisions concernées — de cette tache trés importante de la gestion, vu le nombre de
facteurs, de parametres et de fenétres temporelles a prendre en considération si on veut
étre rigoureux, c’est-a-dire, in fine, "tomber juste" dans les comptes.

La théorie des systemes, la modélisation de processus, va-t-elle alors tourner lachement le
dos 1a ou justement on croyait qu’elle pouvait se rendre utile? La réponse a cette question
angoissante, le "thriller" des systemes, est dans notre prochain numéro.
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Que non point! On va glisser d’autres morceaux choisis de systémique dans la caisse:

* La mise des ¢léments de ce Tableau 3, ainsi que d’autres aussi intelligibles, en un
"oraphe d’influence";

* Ensuite, répondant a la demande de Lectrices frétillantes, on cédera au caprice d’écrire
un petit modele naif de processus temporel avec des conditions initiales;

e Enfin sera dessiné un schéma-type (publié) d’un progiciel de trésorerie standard,
tenant compte de la hiérarchie temporelle. Pour le reste, faudra aller surfer ailleurs.

4.1.3 Graphe d’influence

La Figure 24 est une proposition de graphe d’influence intégrant la plupart des éléments
cités. Il serait fort utile pour formuler un modele de dynamique des systémes en gestion
et en faire un simulateur de situations de trésorerie résultant de situations et de décisions
variées.

Ce n’est toutefols pas un schéma de calcul; on y lit bien d’ailleurs que plusieurs variables
désignent des factenrs faisant partie du processus mais non des flux et des comptes.

Figure 24. Proposition de graphe d’influence de la trésorerie
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Un mini-modéle de trésorerie

Par esprit d’économie, on va généreusement offrir une petit modéle d’analyse de liquidi-
tés a la désormais célebre ASLJSIGASRH, Association de Systémique et Loisirs "Joie et
Santé" de I'Institut de Gériatrie d’Anguille-Sous-Roche. Bien sur, les grands théories et
schémas globaux sont laissés au vestiaire (pres des verres a bulles pour mettre le dentier,
sous le crochet pour suspendre la sous-ventriere), mais on s’occupera de la petite caisse
du bar, dérisoire peut étre mais sirement ration de survie de cette éminente Société.

Soit L désignant le niveau ("Level" en anglais) de Liquidités, le trésor disponible en caisse
le dimanche soir apres la troisieme mi-temps. Ces liquidités forment un s7ock en écono-
mie, formé par un accumulatenr (une intégrale) en systémique. Clest la variable endogéne du
modele, donc résultante des relations traduisant les valeurs des mouvements et des flux.

Les variables sont dites exogénes lorsqu’elles sont fournies au modéle (donc a 'analyste et
au décideur) sans y étre engendrées. Elles peuvent étre issues de comportements
d’agents, ou de phénomenes extérieurs, mais personne n’en a la maitrise dans la problé-
matique sous revue.

Les variables sont dites de décision lorsque leurs valeurs peuvent étre choisies par 'analyste
(ce sera souvent aux fins de simulation) ou par le décideur (aux fins de traduire une po/-
tigue).

Les parametres calibrent les relations entre les grandeurs en présence. Le choix ou Pestima-
tion de leurs valeurs est fondé sur diverses considérations dont il est question dans
Iexposé sur les « Modeles de processusy, précisément la section sur Ué/ucidation, et surtout
dans exposé sur la « Dynamique de systemes en gestion».

Les modeles plus habillés utilisent aussi des variables dites auxiliaires; les relations
"passent” en quelque sorte par celles-ci pour en exprimer d’autres qui sont des clefs de
I'analyse. Ainsi le nombre de clients peut étre requis pour estimer le chiffre d’affaires.

On sera frustré de ne pas en voir de toutes ces couleurs dans le petit machin qui suit,
mais il y en a beaucoup de chatoyantes dans la « Dynamique de systémes en gestion». En
attendant, le modéle répond au graphe orienté (ni boucle ni interaction) de la Figure 25.

Figure 25. Vilain petit graphe d’influence de la caisse

/_> H (Cash)
/—P C (Couts \
R (Recettes)

\—/'

S~ Tt (Stock) /

L (Caisse)
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Formulation

Le niveau L est toujours exprimé par le précédent, L1, plus sa variationA:

(1) IL=I, +AL

La génératrice de la dynamique de la trésorerie est le bar du club. Soit R la recette, qui
croit avec 'avancement de la saison de la pétanque et de la température. Disons que sa
croissance autonome est de 20% par semaine, soit:

@) Ry=aRy,

Le parametre a est exogene, rendant la variable R, exogene, mise en italique pour cette
raison. Soit que les poivrots paient 40% cash (H), et mettent en ardoise (A) les 60% res-
tants pour la période suivante (Plus sérieux les comptables 'appellent "effets a recevoir",
lesquels résultent du crédit accordé aux clients):

(3) Hk = bRk

Soit un ajustement du stock (en valeur courante) par la moitié de la variation de consom-
mation. Cette politique "rule of thumb" ("regle du pouce") remplace avantageusement,
par son élégante simplicité, des tas de modeles de systemes qu’on ne comprend jamais:

(4) AS =d. (Lk_Lk—l)

Cecli revient a écrire que la valeur du stock (S) est de 50% de la valeur des ventes d’une
période (semaine). Quant au cott des produits vendus, il est de 90% de la recette, soit:

(5) Ck =c Lk

Réunissant les composantes déposées ci-dessus, on obtient la relation d’évolution tempo-
relle (6):

(6) Lk — Lk—l + Hk—1+(l —b).Rk - Ck - ASk

Les parameétres sont constants (il n’est pas écrit a ou a(t)), de sorte que le mode¢le est dit
a coefficients constants, ou nwariant. Une des implications de cette propriété (outre la
simplicité) est qu’une translation temporelle ne modifie pas le comportement; on aurait
ainsi les mémes relations quelque soit la saison ou indépendamment de périodes spéci-
fiques. Lorsque la formulation exprime les parameétres avec un indice temporel, elle est
bien sur qualifiée de variante. Forcément elle est plus compliquée mais plus réaliste.

Siles parametres s’ajustent en fonction de valeurs de variables endogenes ou auxiliaires,
le modele est dit "adaptatif"; ce serait le cas ici si le taux d’ajustement du stock (le para-
metre d ci-dessus) était modifié en fonction du taux de la consommation.

Le parameétre b de cette formulation peut étre considéré comme décisionnel; en effet, le
gestionnaire pourrait établir le rapport de créance admissible; il pourrait aussi sur le délai
du crédit, par exemple autoriser s semaines, ce qui impliquerait H = f(Ry_). Plus généra-
lement, dans un vrai modele de trésorerie, on sait qu’une des manceuvres du gestionnaire
est de calibrer la relation entre le crédit accordé aux clients et celui accordé par les four-
nisseurs — ce qui a des implications sur le besoin en roulement.
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4.1.6

Le parametre "d", d’ajustement du stock, est aussi un parametre de "politique"”, ou seule
est vue ici 'implication sur la caisse, mais, plus généralement se présente aussi toute la
question de la régulation de approvisionnement en relation avec les couts de stockage,
les risques de pénurie et le besoin en fonds de roulement, bref toute une aventure de...
systemes en gestion.

On peut a présent exprimer I’évolution du niveau de liquidités en remplacant les variables
auxiliaires par leur expression en fonction de la recette R, qui est le "leader" de cette
petite dynamique:

(7) Lk — Lk—l +b'Rk + (1 -b) Rk—l - C.Rk - de + (1—d) Rk—l

Sib = (c+d), alors le coefficient de Ry, la recette actuelle, s’annule, et le modele n’a plus
de sens; mais cela signifierait que le ratio de crédit au client (b) serait négatif — il devrait
payer cash 40% de plus que le prix — bref, il vaut mieux regarder ce que signifient les
parametres. Soit ici b=(c+d)-1, ce qui simplifie (7) en (8)

@  Lp=Tyq-Re+ (2-b-d). Ry

Posons (2-b-d)= p, de sorte que le mode¢le se rétrécit en (9) et (10):
®)  Ry=aR,

(10) Ly =Ty q-Re+p. Ry

Le principe de I'analyse de processus (puis de systemes, quand on sera adulte) est d’expri-
mer 'output — ce sera le niveau de la caisse — en fonction de I'input (les recettes R) via la
fonction de transfert (H), donc d’arriver en bonne santé a la séquence: R—> H —> L.

Analyse par la transformée-z

Ce type de contrile élémentaire est pratiqué par des trésoriers qui ont des petits talents
cachés de systémiciens. La "longue division", en revanche, n’a pas été faite ici: on a déja
dit que c’est un truc si exaspérant et emmerdatoire qu’il est encore responsable de pré-
sence d’éleves de 18 ans dans le cycle inférieur. Sa vertu est cependant de pouvoir lire des
choses simples en se mettant a table devant celle des transformées inverses. La transfor-
mée de (9) est a vue:

11 RT=1/(1-az)

Quant a (10), elle s’accouple en paralléle puis en série selon la Figure 26:

Figure 26. Graphe de flux de signaux de la caisse
-1

o 1 LT
RT o—» 0 O—p—O—p—0O
\4_/
Z
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Le couplage du graphe 25 avec la transformée de I'input donnée par (5) donne:
T_ 1 —l+pz _ —1+pz
l-az  1-z l—(1+a)z+az2

La division des polynomes fournit la série:

L

LT=1- pz - qz* ... (on fera la suivante, c’est promis).

Les conditions initiales

Des grandeurs indispensables pour lancer un processus sont les conditions initiales, les
valeurs au temps k=0, — mais on ne dit jamais ou est cette origine, ou "quand commence
la dynamique". Formellement, elles font surface en exploitant la transformée d’un déca-
lage prospectif, c’est-a-dire, pour les deux variables auto-régressives L et R, 'expression:

(12) Z ) =Z'0T -1y
(13) ZRys)) =Z'RT-Ry)

La formulation trop simpliste oblige a donner artificiellement une valeur initiale a R pour
engendrer son auto-régressivité, mais c’est un flux, qui n’a donc pas de stock de départ;
s’1l fallait programmer le modele par simulation, il faudrait utiliser une variable auxiliaire.
Ceci dit, on verra tout de suite que ceci revient a utiliser un input des recettes qui est
équivalent a une impulsion unitaire initiale. Le truc est d’écrire (12) avec un décalage
prospectif, puis de I'exprimer selon L, soit:

Licy1 = L - Ry +p- Ry
(14 Ly =ILgq + Rypg-p- Ry

Appliquant les transformées du décalage prospectif, soit (12) et (13), on obtient la solu-
tion, illustrée ensuite par la séquence de graphes 27.

L’expression de 'ouput en fonction des conditions initiales et de I'influence de I'input,
c’est-a-dire la lecture du graphe de flux réduit:

1

-2

L' = [—zf1 (Ly+Ry) +R". (zf1 -p)]-

La prémultiplication du premier terme par z/z donne le partitionnement voulu:
-1
T -1 T z —
15 L' = — . (L,+Ry +R'.2=L
z—1 1— Z_l

Cette derniere équation peut étre représentée selon un systeéme matriciel dans lequel les
inputs sont:

* Les valeurs initiales appliquées a2 une impulsion unitaire (de transposée 1/(z-1));

* La partie de la fonction de transfert "dynamisant” la transformée de l'input:

16) yr=HT xT
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Figure 27. Réduction du graphe de liquidités

Faire le design de (4):

Entrer par I'input: 271.140

T
R +O\_>/

L’expression (16) s’écrit ici:

-1 T

a7 L' =

Comme la recette est auto-générée par Ry = a.Ry_4, la transformée est:

R,

T_
(18) R = a2

L’analyste peut alors exprimer le comportement dans le temps de P'output et sa sensibilité
aux parametres et valeurs exogenes.

Soit un essai avec les valeurs suivantes:

e a=12 (croissance de la Recette)
s b=04 (pourcent payé cash)

* ¢c=09 (part du cott dans le prix)
e d=05 (ajustement du stock)

e Rp=24 (Recette initiale)

e Ly=230 (Liquidités initiales)

Le développement de (17) est:

T 25 30 30 z —11
= == _ " + .
1) L -2z l—-z 1-12z2 1
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Pour exprimer la transformée inverse (revenir dans le domaine temporel), on peut faire la
longue division de (19), qui est tres courte:

[Too24 30 30 1/z-L1

z—1 z—-1 l—-pz 1-1/z

24 30 , 30 1-Ll
z—1 z-1 l-pz z-1

54 N 30-(1-1,12)
l-z (I-pz)-(z-1)

_ 54 LA B
l-z l-pz 1-z

L’identification des numérateurs s’écrit:
A(1-z) + B(1-pz) = -30 + 33z
En exploitant les deux racines, on a:
Pour z=1, B(1-p) = 3, d’ou: B =3/(1-p)
Pour z=1/p, A(1-1/p) = -30+33/p, d’ou: A = (33-30p)/(p-1)

Donc,

. 54 +3/(1—p)+(33—30p)/(p—1)
-z -z l-pz

On peut voir 'évolution selon différents taux de croissance supposés des recettes, soit le
parametre p. Ainsi, pour p=1,2, (R,= 1,2R}¢), on a:

T _ 54 . 3/(1-p)  (33-30p)/(p-1)

-z -z l-pz
([To39 30 Donc I, = 39 euros - 15.1,2%
-z 1-1,2z

La transformée inverse est un peu naive, il est vrai, mais dans la vie aussi c’est souvent a
ces demoiselles qui sont les plus naives qu’il arrive le plus de choses...

Deux conclusions:

e Dr’abord, il est ridicule de faire tout cela pour obtenir ce résultat déplorable: la mise de
départ est mangée aux mites;

* Ensuite le trésorier, ou méme la concierge, pouvait dire tout de suite quun cout de
90% du prix de vente ne fait pas vivre son homme. Mais si le mod¢le a pu donner rai-
son a la concierge, c’est qu’il est valide et utile.

Et toc. Quand on va a une soirée, apres tout, peu importe avec laquelle de ces dames on
sort. Ce qui est important, c’est avec laquelle on rentre.
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4.1.8  Intégration des données dans un logiciel de trésorerie

11 existe des supports "informatisés" pour aider le trésorier. Déja un tableur moderne, par
exemple, avec son déroulement temporel horizontal, permet d’y présenter quasi toutes
les grandeurs pertinentes et leur timing, avec I'avantage de la clarté et de la flexibilité.
Cette recommandation réaliste aidera au moins a ne pas se tromper a cause de complica-
tions inutiles, et a ne pas acheter fort cher des programmes tout faits qu’on ne peut ni
adapter, ni changer (car ils sont compilés), ni utiliser parce qu'on n’est pas malin assez.

Figure 28. Intégration des données dans un logiciel de trésorerie
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’ . . ’ . r
Trésorerie et gestion de trésorerie, @ ocessus
op. cit., p.134, de source: Traitement des Cet arc désigne le
DERYCK & PH. KNEIPE échéanciers en > flux de données
dates de valeurs .
Cet arc désigne le
— = réseau "décisionnel"
Données (proposé par CdB)
de
Trésorerie
TRESORERIE TRESORERIE TRESORERIE
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BANQUE g ‘ ‘
{ Clients } i v\ {Matchés financiers }
{ Fourm'sseurs}

Ce schéma de la Figure 28 (de P. DERYCK, «Séminaire d’étude de la trésorerien, op. cit., et
PH. KNEIPE, Gestion de la trésorerie de I'entreprise, op. cit., p.34) propose, en hommage a ces
auteurs, une architecture intégrée. Toutefois, elle adopte, dans un souci de cohérence, la
sémiologie graphique de ces exposés-ci.
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Ce schéma a au moins le mérite d’étre non seulement claire, mais encore d’un prix abor-
dable puisqu’il est honnétement piraté. C’est comme le disait SURCOUF le Corsaire: lui-
méme avouait qu’il se battait pour P'argent, tandis que les Roastbeefs d’en face préten-
daient le faire pour ’honneur... mais chacun se bat pour ce qu’il n’a pas.

Application au lissage exponentiel

Formulation du modéle d’extrapolation

Comme les modeles aux différences relevent de la catégorie des filtres linéaires, il en va
de méme pour les méthodes de projection de séries chronologiques fondés sur les struc-
tures autorégressives. Un cas particulier de tels filtres, dont le succes — sinon la perfor-
mance — est justifié par son élégante simplicité, est la famille dite de "lissage exponentiel”.
Pour soutenir I'assertion certains modeles pourraient servir a quelque chose, voici une
application de la transformée-z aux deux cas le plus élémentaires de lissage exponentiel.

Post-scriptum.

Les cas plus compliqués sont toujours a faire par les éléves, de méme que les démonstra-
tions de théoremes flageolants que les profs n’ont pas trouvées. Ainsi, il est fréquent de
lire: "Etant évidentes, elles seront laissées a I’étudiant au titre d’exercice; suggestion pour
la démonstration: utiliser la théorie des fractales flous dans un espace elliptique de Lobat-

chevski."

Le "lissage exponentiel" est un filtre linéaire fondé sur un modéle auto-régressif utilisé
frénétiquement en gestion pour le lissage et la projection de séries chronologiques. Seule
sa version la plus élémentaire, trés connue, sera mentionnée ici, afin d’illustrer un usage
facile de la transformée-z. Quand la version n’est plus élémentaire, elle ne peut d’ailleurs
plus étre qualifiée d’"utilisée en gestion"; elle peut devenir scientifique, ou étre confiée a
I’économétrie.

Le mode¢le de base forme un output y, par une variété linéaire de ses propres valeurs
antérieures dont les poids sont exponentiellement décroissants en fonction de 'age des
valeurs, soit (1):

y, = ax, + a(l-a)x, 1 + a(1-a)*x, 5 + ... +(1-a)'yy, soit encore:

t—1 « . t—1 .
1 = azkzo(l—a) X, T(-a)y, = zkzowkxt_kvayO

Cette expression (1) devrait raviver des souvenirs des Lectrices adeptes de convolutions.
Elle ne diverge pas si 0<a<1; les autres valeurs de « sont évidemment sans intérét pour la
procédure. Par substitutions récurrentes, on obtient la relation de base:

@ ye=axet (1-a)y

Cette relation (2) peut ensuite étre exploitée par composition pour former des filtres
d’ordre plus élevé, disons 2 et 3. Au-dela, des procédures plus complexes sont appelées
pour le traitement des séries.
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4.2.2

Le filtre d’ordre 2 se construit par superposition de deux filtres élémentaires, soit:

1

yE) = axt+(1—a)y8]
) - -

Vi ayt ( a)y

1 2
B oy = 2y()—YE )

La projection par ce mode¢le est linéaire selon (4):

“4) ;(t,t+h - Yt+hbl,t

Quant au filtre d’ordre 3, pour 'obtenir il faut en superposer... trois! Ceci revient a exé-
cuter trois lissages successifs du premier ordre, soit:

1
yE) = axt+(1—a)yg_)]
2 2
yE ) = ayt +(1—a)y( )
3 3
.\/f = ayt (1 a)y( :

La projection par ce modele est quadratique selon (5):

1,2

5) Xtt+h Yt+hblt+2h b,

Une fois les conditions initiales obtenues (les valeurs au temps "0"), les coefficients b; de
I'extrapolation sont obtenus de fagon adaptative en fonction des valeurs lissées y,:

2 3
© bo: =3y, =3y +y
' 1 2 3
e = —— [(6-5a)y) ~2(5 - 4a)y\” + (4-3a)y ]
2(1-a)
~ 1 2 3
by = [y() y() yﬁ )]
(1—a)

Les réponses aux fonctions d’impulsion

Les clefs du modele étant données, la question est de connaitre la réponse du modele aux
données passées dans le filtre; en pratique c’est parler du comportement de la série p(t)
qui est le passage de x, dans le filtre. La Figure 29 en montre un exemple réaliste, celui de
23 mois de ventes d’un distributeur de voitures MERCEDES.

On y constate un phénomene inquiétant: recevant une série dont le signal fondamental
est quadratique, le filtre simple et le double ont des comportements peu vertueux: ils
accusent un retard et, I'un dans I'autre, comme disaient les petits amis Jacquot et Claudy,
ils s’en tirent assez mal. Ceci n’est pas seulement dua a la mauvaise tenue de route des voi-
tures MERCEDES, mais bien aux dérapages des filtres de lissage lorsque ceux-ci ne sont
pas appliqués correctement.



x(t) 5 y1() 5y2() 5 y(O)

Deux modeles de processus en gestion

Figure 29. Réponse du lissage double a une fonction quadratique

Double lissage sur 23 mois avec a = 0,1

10,00 T 40 Série lissée y(t)
Série brute x(t) / y

8,00
6,00

4,00

-2,00

-4,00

-6,00 T Ventesx ~ =&  yl(t) Ay T Ty

Un peu de psychanalyse des systemes par les transformées va aider a élucider ces
déviances. A cette fin, il faut suivre la tradition de la profession, qui est de soumettre au
filtre des inputs élémentaires, et considérer leur réponse; ensuite, il est possible d’effec-
tuer des compositions de ces signaux pour en déduire la réponse a des signaux d’ordre
plus élevé. 11 s’agit donc d’interaction entre deux processus, dont I'input est "standard",
et de montrer le comportement temporel de ouput.

Le grand auteur des méthodes généralisées de lissage exponentiel, R.G. BROWN, y avait
déja pensé quand on était encore jeune (Swoothing, forecasting and prediction of discrete time
series, Prentice Hall 1963) et le résultat de cette analyse, trés connue évidemment, figure
p-115 et sq. de cet ouvrage.

Figure 30. Les fonctions d’input standard
|
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d’input - —_ —
Toit
1 :' — 77T T TMarche (:=1) - T ~ paice  —=¥
~
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/ Rampe (x=t) Escalier —=Yy
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Le Tableau 4 donne les réponses a une impulsion respectivement des filtres des trois pre-
miers ordres, dits "simple", double" et "triple". Comme le filtre de premier ordre est la
constante 2 que multiplie une simple rétromettance, du type g(k) = b g(k-1), sa fonction de
transfert H(z) est déja connue, a/(1-bz). Les autres étant le double, puis le triple, méme
processus mis en série, il suffit de faire les produits des fonctions de transferts par elles-
mémes. C’est ce que résume le Tableau 4, conforme au Tableau 10.1 de BROWN, op. ¢/t.
p.1406, ou le parametre & est écrit pour (1-a).

Tableau 4. Réponses des filtres linéaires a une impulsion unitaire

Otrdre du filtre Fonction de transfert H(Z) Re.ponse ? une
impulsion
Simple a — pt
= ab
1=bz Y
Double e a2(t . l)bt
(1-bz)
Triple P a3(t+1)2(t+2)bt
(1-bz)’

Le Tableau 5 donne a présent la réponse du lissage simple aux quatre inputs standard; il
réunit les résultats des tableaux 10.3 et 10.4 de BROWN (gp. ¢it, Ch.10). Qu'apprend-t-on de
ces formules? Le modele de base (2) est linéaire et les compositions d’ordre plus élevé,
donc (3) et (6), en sont des combinaisons linéaires; cette propriété s’applique donc aussi
aux transformées. La colonne centrale donne les réponses de ces filtres aux différentes
impulsions, fondées sur les transformées inverses rappelées au Tableau 4.

Ceci donne les comportements transitoires, c’est-a-dire I’évolution temporelle de la série
d’ouput lorsque passe le temps t. Ces comportements sont a comparer a celui des inputs
respectifs présentés a la Figure 30; leur divergence éventuelle par rapport a cette évolu-
tion de référence est un critere d’inadéquation du modele.

Evidemment, un filtre de "lissage" ne doit pas nécessairement "coller” aux observations
(ce n’est pas un ajustement), mais ne doit pas avoir une allure méconnaissable par rapport
a celle de la source. Ceci se traduit au cours de la vision graphique des séries (x et y), et
mathématiquement par les écarts entre la fonction d’input (t, t* etc) et la formule de
réponse. Lorsque cet écart comprend un facteur 4, c’est-a-dire (1-2)", celui-ci tend vers 0
pour t—00, puisque a<1.

On obtient alors la situation en régime "final" (en anglais "steady state"), ou le "reste",
figurant dans la troisicme colonne, représente le biais, la divergence de comportement.
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Tableau 5. Les réponses des filtres aux inputs standard et leurs biais

Input

Réponse transitoire

Biais en régime
” ”"
final "x -y,

Lissage d’ordre 1

(a) Impulsion X, = O(t) ¥, = a B 0
(b) Marche x, =1 y, = 17bt+l 0
(c) Rampe X, =t _ ., b t b
v, = t-20-b") :
d) Parabol 2
(d) Parabole x =t yt=t272—-bt+b(l-;b)(lfbt) 2_bt7b(14;b)
a a a a
Lissage d’ordre 2
(e) Impulsion x, = o) az(t+ l)bt 0
(f) Marche x, =1 l—[l+(t+l)a]bt+l 0
Rampe =t 2b
(g) Ramp X, t72_b+(g+t)bt+1 2b
a \a a
(h) Parabole - t+l 4bt 2b
R tz—z—b<t—9—[t(l+b)+z}b -=
a al a a a
Lissage d’ordre 3
(i) Impulsion X, = a(t) a3(t+l)(t+2)bt 0
2
(j) Marche x, =1 0
BROWN écrit p. 150 (op. cit.):
(k) Rampe Xp =t «I am indebted to Mr. G.J. CROOK for cartying through and 3b
checking the tedious algebra needed to prepare these tables.»
(1) Parabole —— Pour Pordre 3, les Lecteurs et Lectrices sont donc invités a 6bt 3b
t 220 22
s’adresser a ce bon Mr. CROOK pour en obtenir une version a a

personnalisée, dédicacée aux acquéreurs du présent ouvrage.
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Un exemple typique, et facile a interpréter, est celui de la "rampe", figurant sous (g) au
Tableau 5. Le deuxiéme ouput de lissage, yt(z) dans le modele, peut "suivre" le signal
croissant linéairement (la rampe), mais gardera en état final (la troisicme colonne) un
écart constant de 2(1-a)/a — ce qui est ""age moyen" de ses valeurs.

Des lors, le modele de lissage double exprimé par Zyt(z) - yt(l) sera capable de suivre un tel
signal d’input; il ne pourra cependant pas traquer une parabole, ainsi que le montre la
ligne (h) du Tableau 5.

Quand au lissage #7ple, qui peut suivre un retournement (un morphion parabolique), il
expédie nécessairement la projection selon une quadrique, donc une croissance ou un
écroulement rapidement déraisonnable. I1 a cependant la vertu de décrire un mouvement
parabolique en s’y ajustant — il est d’ailleurs fabriqué pour cela — et cela doit plaire aux
"chartistes" de la bourse, ou certains 'appellent le "TRIX", ce dont témoigne la référence
suivante, pire que naive: «Un bon truc: Le TRIX». Dans Cash/du 11 mars 1999, p.18.

Et voila. Merci BROWN, c’est trés bien; vous pouvez vous retirer, nous allons délibérer.

Il est d’ailleurs ’heure du baiser chinois.



Les voies des processus

Les voies des processus

il sort de son immobilisme, trois centres d’intérét dominent I'investigateur des
mouvements, des changements, de I""évolution".

11 s’agit de la capacité de:

* Les appréhender, les exprimer: c’est la tache de 'exposé «Les Modeles de processus»;

*  Comprendre et mesurer les relations entre ces changements, puis les prédire: cC’est le pré-
sent exposé sur les «Analyses de processus»;

* Influencer, contrdler les changements et zaitriser 'évolution: c’est une mission confiée
dans un quart d’heure aux «Processus sous consigne».

Mais cette quéte de la lucidité et du controle n’oriente pas les processus conduisant a la
liberté, et surtout a la liberté de la pensée. On n’en veut pour preuve que la variété d’atti-
tudes philosophiques avec lesquelles les processus doivent naviguer:

¢ «Tout est transitoire», selon les bouddhistes. Ils en sont néanmoins devenus les gens
les plus tranquilles du monde. Leurs réponses aux impulsions (comme une piqare de
guépe en pleine méditation) ne parait pas faire sursauter leur nirvana;

* «On ne se baigne jamais dans le méme fleuve» selon Héraclite D’EPHESE;

¢ La «Fatalité» des musulmans, le «Destin inexorable» et la «Prédestination» des Jansé-
nistes (Dont Blaise PASCAL et Jean RACINE, ce qui n’est pas si peu);

¢ Le «Déterminisme absolu» de certains positivistes, lequel s’oppose au «Tout est effet
du hasard» du bon vieux CARNEADES.

Dans les diverses versions spirituelles qui font des hommes de simples sujets de Dieu,
peu de place est laissée, par définition, au libre-arbitre et a la liberté individuelle. Si c’est
Lui qui impose toutes les regles, il reste la possibilité d’en patler, pas de les discuter.

A Popposé, la matérialité organique présente I’ensemble des processus comme un pro-
gramme héréditaire invariant, inscrit dans les associations génétiques; le processus de la
vie «I’ensemble des fonctions qui résistent a la mort» (selon Bichat, auvres choisies, Flam-
marion 1984). De plus, la pensée elle-méme serait engendrée via des phénomenes neuro-
naux qui peuvent étre exprimés en des termes physico-chimiques, selon des échanges
d’énergie et de maticre.

Dans ces deux cas, cependant, quelque soit leur degré de déterminisme élucidé par la
science, elle-méme a progressé en mettant en évidence des indéterminations qui sont
émergentes des processus, de par des perturbations et du nombre énorme d’interactions.
Les libertés organiques seraient alors issues de la diversité, des "césures" des processus
du matérialisme organique, lequel cesse lui aussi d’étre inexorable autant que la prédesti-
nation. Les libertés de la vie ne seraient alors, comme dans les sociétés humaines, que des
déchets du désordre.

Mais soudain, alors qu’on croit dominer ses processus, qu’on les a transformés, autopsiés
et placés en soins intensifs, on sera effaré de sentir le temps, dopé depuis sa naissance,
nous dépasser sans un regard en arriere.
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